Attachment Proteins and Their Role in Extracellular Matrices

  • A. Tyl Hewitt
  • George R. Martin


It has long been appreciated that extracellular matrices provide tissues with their strength, stability, and structure (Gross, 1974; Hay, 1981a, b). However, the extracellular matrix itself was considered to be rather inert and to show little specificity. More recently, it has been established that different tissues contain unique matrices generated by the resident cells, such as those associated with fibrous tissues, cartilage, and basement membranes. The components of these different matrices, which include collagens, proteoglycans, and glycoproteins, are different in each tissue both in terms of type and amount (Bornstein and Sage, 1980; Burgeson et al., 1976; Chung and Miller, 1974; Levitt and Dorfman, 1974; Levitt et al., 1975; Goetinck et al., 1974; Royal and Goetinck, 1977; Kefalides et al., 1979; Hay, 1981a, b; Kleinman et al., 1981, 1982a; Miller et al., 1971; Miller and Matukas, 1969, 1974). Further, it appears likely that the proteins produced for the matrix of a given tissue show specific interactions that generate a supramolecular complex of defined stoichiometry. This supramolecular complex not only determines the physical properties of the tissue but also defines the phenotype of the cells in contact with it.


Basement Membrane Heparan Sulfate Chondroitin Sulfate Sulfate Proteoglycan Collagen Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, S. E., Sobel, M. E., Howard, B. H., Olden, K., Yamada, K. M., DeCrombrugghe, B., and Pastan, I., 1977, Levels of translatable mRNAs for cell surface protein, collagen precursors, and two membrane proteins are altered in Rous sarcoma virus-transformed chick embryo fibroblasts, Proc. Natl. Acad. Sci. USA 74: 3399–3403.PubMedGoogle Scholar
  2. Ali, I. U., Mautner, V. M., Lanza, R. P., and Hynes, R. O., 1977, Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein, Cell 11: 115–126.PubMedGoogle Scholar
  3. Baron-Van Evercooren, A., Kleinman, H. K., Ohno, S., Marangos, P., Schwartz, J. P., and Dubois-Dalcq, M., 1982, Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures, J. Neurosci. Res. 8: 179–194.PubMedGoogle Scholar
  4. Bentz, H., Bächinger, H. P., Glanville, R., and Kühn, K., 1978, Physical evidence for the assembly of A and B chains of human placental collagen in a single triple helix, Eur. J. Biochem. 92: 563–567.PubMedGoogle Scholar
  5. Berman, M. D., Waggoner, J. G., Foidart, J.-M., and Kleinman, H. K., 1980, Attachment to collagen by isolated hepatocytes from rats with induced hepatic fibrosis, J. Lab. Clin. Med. 95: 660–671.PubMedGoogle Scholar
  6. Birdwell, C. R., Gospodarowicz, D., and Nicolson, G. L., 1978, Identification, localization and role of fibronectin in cultured bovine endothelial cells, Proc. Natl. Acad. Sci. USA 75: 3273–3277.PubMedGoogle Scholar
  7. Blumenstock, F. A., Saba, P., Weber, P., and Cho, E., 1976, Purification and biochemical characterization of a macrophage-stimulating alpha-2-globulin opsonic protein, J. Reticuloendothel. Soc. 19: 157–172.PubMedGoogle Scholar
  8. Bornstein, P., and Sage, H., 1980, Structurally distinct collagen types, Anna. Rev. Biochem. 49: 957–1003.Google Scholar
  9. Burgeson, R. E., El Adli, F. A., Kaitela, I. I., and Hollister, D. W., 1976, Fetal membrane collagens: Identification of two new collagen alpha chains, Proc. Natl. Acad. Sci. USA 73: 2579–2583.PubMedGoogle Scholar
  10. Burrill, P. H., Bernardini, I., Kleinman, H. K., and Kretchmer, N., 1981, Effects of serum, fibronectin, and laminin on adhesion of rabbit intestinal epithelial cells in culture, J. Supramol. Struct. Cell. Biochem. 16: 385–392.PubMedGoogle Scholar
  11. Chen, L. B., 1977, Alteration in cell surface LETS protein during myogenesis, Cell 10: 393400.Google Scholar
  12. Chen, L. B., Murray, A., Figal, R. A., Bushnell, A., and Walsh, M. L., 1978, Studies on intercellular LETS glycoprotein matrices, Cell 14: 377–391.PubMedGoogle Scholar
  13. Chicquet, M., Puri, E. C., and Turner, D. C., 1979, Fibronectin mediates attachment of chicken myoblasts to a gelatin-coated substratum, J. Biol. Chem. 254: 5475–5482.Google Scholar
  14. Chung, E., and Miller, E. J., 1974, Collagen polymorphism: Characterization of molecules with the chain composition [al(III)]3 in human tissues, Science 183: 1200–1203.PubMedGoogle Scholar
  15. Chung, E., Rhodes, R. K., and Miller, E. J., 1976, Isolation of three collagenous components of probable basement membrane origin from several tissues, Biochem. Biophys. Res. Commun. 71: 1167–1174.PubMedGoogle Scholar
  16. Del Rosso, M., Cappelletti, R., Viti, M., Vannucchi, S., and Chiarugi, V., 1981, Binding of the basement membrane glycoprotein, laminin, to glycosaminoglycans, Biochem. J. 199: 699–704.PubMedGoogle Scholar
  17. Dessau, W., Sasse, J., Timpl, R., Jilek, F., and von der Mark, K., 1978, Synthesis and extracellular deposition of fibronectin in chondrocyte cultures, J. Cell Biol. 79: 342–355.PubMedGoogle Scholar
  18. Dessau, W., von der Mark, H., von der Mark, K., and Fischer, S., 1980, Changes in patterns of collagens and fibronectin during limb bud chondrogenesis, J. Embryol. Exp. Morphol. 57: 51–60.PubMedGoogle Scholar
  19. Dodson, J. W., and Hay, E. D., 1974, Secretion of collagen by corneal epithelium: Effect of the underlying substratum on secretion and polymerization of epithelial products, J. Exp. Zool. 189: 51–72.PubMedGoogle Scholar
  20. Ekblom, P., 1981, Formation of basement membranes in the embryonic kidney: An immunohistological study, J. Cell Biol. 91: 1–10.PubMedGoogle Scholar
  21. Engel, J., Odermatt, E., Engel, A., Madri, J. A., Furthmayr, H., Rohde, H., and Timpl, R., 1981, Shapes, domain organization and flexibility of laminin and fibronectin: Two multifunctional extracellular matrix proteins, J. Mol. Biol. 150: 97–120.PubMedGoogle Scholar
  22. Engvall, E., and Ruoslahti, E., 1977, Binding of soluble form of fibroblasts surface protein, fibronectin, to collagen, Int. J. Cancer 20: 1–5.PubMedGoogle Scholar
  23. Engvall, E., Ruoslahti, E., and Miller, E. J., 1978, Affinity of fibronectin to collagens of different genetic types and to fibrinogen, J. Exp. Med. 147: 1584–1595.PubMedGoogle Scholar
  24. Epstein, E. H., Jr., 1974, [al(III)]3 human skin collagen: Release by pepsin digestion and preponderance in fetal life, J. Biol. Chem. 249: 3225–3231.Google Scholar
  25. Foidart, J.-M., Berman, J. J., Paglia, L., Rennard, S. I., Abe, S., Perantoni, A., and Martin, G. R., 1980a, Synthesis of fibronectin, laminin, and several collagens by a liver-derived epithelial cell line, Lab. Invest. 42: 525–532.PubMedGoogle Scholar
  26. Foidart, J.-M., Bere, E. N., Yaar, M., Rennard, S. I., Gullino, M., Martin, G. R., and Katz, S. I., 1980b, Distribution and immunoelectron microscopic localization of laminin, a noncollagenous basement membrane glycoprotein, Lab. Invest. 42: 336–342.PubMedGoogle Scholar
  27. Furcht, L. T., Mosher, D. F., and Wendelschafer-Crabb, G., 1978, Immunocytochemical localization of fibronectin (LETS protein) on the surface of L6 myoblasts: Light and electron-microscopic studies, Cell 13: 263–271.PubMedGoogle Scholar
  28. Furcht, L. T., Smith, D., Wendelschafer-Crabb, G., Mosher, D. F., and Foidart, J.-M., 1980, Fibronectin presence in native collagen fibrils of human fibroblasts: Immunoperoxidase and immunoferritin localization, J. Histochem. Cytochem. 28: 1319–1333.PubMedGoogle Scholar
  29. Gauss-Müller, V., Kleinman, H. K., Martin, G. R., and Schiffmann, E., 1980, Role of attachment and attractants in fibroblast chemotaxis, J. Lab. Clin. Med. 96: 1071–1080.PubMedGoogle Scholar
  30. Gay, S., and Miller, E. J., 1978, Collagen in the Physiology and Pathology of Connective Tissue, Fisher Verlag, Stuttgart.Google Scholar
  31. Gay, S., Rhodes, R. K., Gay, R. E., and Miller, E. J., 1981, Collagen molecules comprised of al(V)-chains (B-chains): An apparent localization in the exoskeleton, Coll. Res. 1: 53–58.Google Scholar
  32. Gehron Robey, P., and Martin, G. R., 1981, Type IV collagen contains two distinct chains in separate molecules, Coll. Res. 1: 27–38.Google Scholar
  33. Goetinck, P. F., Pennypacker, J. P., and Royal, P. D., 1974, Proteochondroitin sulfate synthesis and chondrogenic expression, Exp. Cell Res. 87: 241–248.PubMedGoogle Scholar
  34. Gold, L. I., and Pearlstein, E., 1980, Fibronectin-collagen binding and requirement during cellular adhesion, Biochem. J. 186: 551–554.PubMedGoogle Scholar
  35. Greenberg, J. H., Seppä, S., Seppä, H., and Hewitt, A. T., 1981, Role of collagen and fibronectin in neural crest cell adhesion and migration, Dev. Biol. 87: 259–266.PubMedGoogle Scholar
  36. Grinnell, F., Harp, D. G., and Minter, D., 1977, Cell adhesion and spreading factor, Exp. Cell Res. 110: 175–190.PubMedGoogle Scholar
  37. Grobstein, C., and Cohen, J., 1965, Collagenase: Effect on the morphogenesis of embryonic salivary epithelium in vitro, Science 150: 626–628.PubMedGoogle Scholar
  38. Gross, J., 1974, Collagen biology: Structure, degradation, and disease, Harvey Lect. 68: 351–432.PubMedGoogle Scholar
  39. Gross, J., 1981, An essay on biological degradation of collagen, in: Cell Biology of Extracellular Matrix ( E.D. Hay, ed.), pp. 217–258, Plenum Press, New York.Google Scholar
  40. Gross, J., and Nagai, Y., 1965, Specific degradation of the collagen molecule by tadpole collagenolytic enzymes, Proc. Natl. Acad. Sci. USA 54: 1197–1201.PubMedGoogle Scholar
  41. Gross, J., Harper, E., Harris, E. D., Jr., McCroskery, P., Highberger, J. H., Corbett, C., and Kang, A. H., 1974, Animal collagenases, specificity of action and structure of the substrate cleavage site, Biochem. Biophys. Res. Commun. 61: 605–612.PubMedGoogle Scholar
  42. Grotendorst, G. R., Sept, H. E. J., Kleinman, H. K., and Martin, G. R., 1981, Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factors, Proc. Natl. Acad. Sci. USA 78: 3669–3672.PubMedGoogle Scholar
  43. Grotendorst, G. R., Kleinman, H. K., Rohrbach, D. H., Hewitt, A. T., Varner, H. H., Horigan, E. A., Hassell, J. R., Terranova, V. P., and Martin, G. R., 1982, Role of attachment factors in mediating the attachment, distribution, and differentiation of cells, in: Growth of Cells in Hormonally Defined Media ( G. H. Sato, A. B. Pardee, and D. A. Sirbasku, eds.), pp. 403–413, Cold Spring Harbor Laboratory, New York.Google Scholar
  44. Hascall, V. C., 1977, Interaction of cartilage proteoglycans with hyaluronic acid, J. Supra-mol. Struct. 7: 101–120.Google Scholar
  45. Hascall, V. C., and Hascall, G. K., 1981, Proteoglycans, in: Cell Biology of Extracellular Matrix ( E. D. Hay, ed.), pp. 39–63, Plenum Press, New York.Google Scholar
  46. Hascall, V. C., and Sajdera, S. W., 1970, Physical properties and polydispersity of proteoglycan from bovine nasal cartilage, J. Biol. Chem. 245: 4920–4930.PubMedGoogle Scholar
  47. Hassell, J. R., Newsome, D. A., and Hascall, V. C., 1979, Characterization and biosynthesis of proteoglycans of corneal stroma from rhesus monkey, J. Biol. Chem. 254: 12346–12354.PubMedGoogle Scholar
  48. Hassell, J. R., Gehron Robey, P., Barrach, H.-J., Wikzek, J., Rennard, S. I., and Martin, G. R., 1980a, Isolation of a heparan sulfate-containing proteoglycan from basement membrane, Proc. Natl. Acad. Sci. USA 77:4494–4498.Google Scholar
  49. Hassell, J. R., Newsome, D. A., Krachmer, J. H., and Rodrigues, M. M., 1980b, Macular corneal dystrophy: Failure to synthesize a mature keratan sulfate proteoglycan, Proc. Natl. Acad. Sci. USA 77: 3705–3709.PubMedGoogle Scholar
  50. Hassell, J. R., Newsome, D. A., Nakazawa, K., Rodrigues, M., and Krachmer, J., 1982, Defective conversion of a glycoprotein precursor to keratan sulfate proteoglycan in macular corneal dystrophy, in: Extracellular Matrix ( S. Hawkes and J. L. Wang, eds.), pp. 397–406, Academic Press, New York.Google Scholar
  51. Hauschka, S. D., and Konigsberg, I. R., 1966, The influence of collagen on the development of muscle colonies, Proc. Natl. Acad. Sci. USA 55: 119–126.PubMedGoogle Scholar
  52. Hauschka, S. D., and White, N. K., 1972, Studies of myogenesis in vitro, in: Research in Muscle Development and the Muscle Spindle (B. Q. Banker, R. J. Przybylski, J. P. van der Meulen, and M. Victor, eds.), pp. 53–71, Excerpta Medica, Amsterdam. Hay, E. D. (ed.), 1981a, Cell Biology of Extracellular Matrix, Plenum Press, New York.Google Scholar
  53. Hay, E. D., 1981b, Extracellular matrix, J. Cell Biol. 91: 205S - 223S.PubMedGoogle Scholar
  54. Hay, E. D., Hasty, D. L., and Kiehnau, K. L., 1978, Fine structure of collagens and their relation to glycosaminoglycans, in: Collagen—Platelet Interactions ( H. Gastpar, K. Kühn, and R. Marx, eds.), pp. 129–151, Schattauer Verlag, Stuttgart.Google Scholar
  55. Hayman, E. G., Engvall, E., and Ruoslahti, E., 1981, Concomitant loss of cell surface fibronectin and laminin from transformed rat kidney cells, J. Cell Biol. 88: 352–357.PubMedGoogle Scholar
  56. Hayman, E. G., Oldberg, A, Martin, G. R., and Ruoslahti, E., 1982, Codistribution of heparan sulfate proteoglycan, laminin, and fibronectin in the extracellular matrix of normal rat kidney cells and their coordinate absence in transformed cells, J. Cell Biol. 94: 28–35.PubMedGoogle Scholar
  57. Hewitt, A. T., Kleinman, H. K., Pennypacker, J. P., and Martin, G. R., 1980, Identification of an adhesion factor for chondrocytes, Proc. Natl. Acad. Sci. USA 77: 385–388.PubMedGoogle Scholar
  58. Hewitt, A. T., Varner, H. H., Silver, M. H., Dessau, W., Wilkes, C. M., and Martin, G. R., 1982a, The isolation and partial characterization of chondronectin, an attachment factor for chondrocytes, J. Biol. Chem. 257: 2330–2334.PubMedGoogle Scholar
  59. Hewitt, A. T., Varner, H. H., Silver, M. H., and Martin, G. R., 1982b, The role of chondronectin and cartilage proteoglycan in the attachment of chondrocytes to collagen, in: Limb Development and Regeneration, Part B ( R. O. Kelley, P. F. Goetinck, and J. A. MacCabe, eds.), pp. 25–33, Liss, New York.Google Scholar
  60. Hopper, D. E., Adelmann, B. C., Gentner, G., and Gay, S., 1976, Recognition by guinea pig peritoneal exudate cells of conformationally different states of the collagen molecule, Immunology 30: 249–259.PubMedGoogle Scholar
  61. Horwitz, A. L., Hance, A. J., and Crystal, R. G., 1977, Granulocyte collagenase: Selective degradation of type I relative to type III collagen, Proc. Natl. Acad. Sci. USA 74: 897–901.PubMedGoogle Scholar
  62. Hynes, R. O., 1973, Alteration of cell-surface proteins by viral transformation and by proteolysis, Proc. Natl. Acad. Sci. USA 70: 3170–3174.PubMedGoogle Scholar
  63. Hynes, R. O., and Yamada, K. M., 1982, Fibronectins: Multifunctional modular glycoproteins, J. Cell Biol. 95: 369–377.PubMedGoogle Scholar
  64. Jaffe, E. A., and Mosher, D. F., 1978, Synthesis of fibronectin by cultured human endothelial cells, J. Exp. Med. 147: 1779–1791.PubMedGoogle Scholar
  65. Jilek, F., and Hörmann, H., 1978, Cold-insoluble globulin (fibronectin). IV. Affinity to sol-uble collagen of various types, Hoppe-Seyler’s Z. Physiol. Chem. 359: 247–250.PubMedGoogle Scholar
  66. Johansson, S., Kjellén, L., Höök, M., and Timpl, R., 1981, Substrate adhesion of rat hepatocytes: A comparison of laminin and fibronectin as attachment proteins, J. Cell Biol. 90: 260–264.PubMedGoogle Scholar
  67. Kamine, J., and Rubin, H., 1977, Coordinate control of collagen synthesis and cell growth in chick embryo fibroblasts and the effect of viral transformation on collagen synthesis, J. Cell Physiol. 92: 1–12.PubMedGoogle Scholar
  68. Kanwar, Y. S., and Farquhar, M. G., 1979a, Anionic sites in the glomerular basement membrane: In vivo and in vitro localization to the laminae rarae by cationic probes, J. Cell Biol. 81: 137–153.PubMedGoogle Scholar
  69. Kanwar, Y. S., and Farquhar, M. G., 19796, Presence of heparan sulfate in the glomerular basement membrane, Proc. Natl. Acad. Sci. USA 76: 1303–1307.Google Scholar
  70. Kanwar, Y. S., Linker, A., and Farquhar, M. G., 1980, Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion, J. Cell Biol. 86: 688–693.PubMedGoogle Scholar
  71. Kefalides, N. A., Alper, R., and Clark, C. C., 1979, Biochemistry and metabolism of basement membranes, Int. Rev. Cytol. 61: 167–228.PubMedGoogle Scholar
  72. Kimata, K., Barrach, H. J., Brown, K. S., and Pennypacker, J. P., 1981, Absence of proteoglycan core protein in cartilage from cmdlcmd (cartilage matrix deficiency) mouse, J. Biol. Chem. 256: 6961–6968.PubMedGoogle Scholar
  73. Kimata, K., Foidart, J.-M., Pennypacker, J. P., Kleinman, H. K., Martin. G. R., and Hewitt, A. T., 1982, Immunofluorescence localization of fibronectin in chondrosarcoma cartilage matrix, Cancer Res. 42: 2384–2391.Google Scholar
  74. Kjellén, L., Oldberg, A, and Höök, M., 1980, Cell-surface heparan sulfate: Mechanisms of proteoglycan—cell association, J. Biol. Chem. 255: 10407–10413.PubMedGoogle Scholar
  75. Kjellén, L., Pettersson, I., and Höök, M., 1981, Cell surface heparan sulfate: An intercalated membrane proteoglycan, Proc. Natl. Acad. Sci. USA 78: 5371–5375.PubMedGoogle Scholar
  76. Klebe, R. J., 1974, Isolation of a collagen-dependent cell attachment factor, Nature (London) 250: 248–251.Google Scholar
  77. Kleinman, H. K., McGoodwin, E. B., Martin, G. R., Klebe, R. J., Fietzek, P. P., and Woolley, D. E., 1978, Localization of the binding site for cell attachment in the al(I) chain of collagen, J. Biol. Chem. 253: 5642–5646.PubMedGoogle Scholar
  78. Kleinman, H. K., Hewitt, A. T., Grotendorst, G. R., Martin, G. R., Murray, J. C., Rohrbach, D. H., Terranova, V. P., Rennard, S. I., Varner, H. H., and Wilkes, C. M., 1980, Role of matrix components in adhesion and growth of cells, in: Current Research Trends in Prenatal Craniofacial Development ( Pratt and Christiansen, eds.), pp. 277–295, Elsevier North Holland, New York.Google Scholar
  79. Kleinman, H. K., Klebe, R. J., and Martin, G. R., 1981, Role of collagenous matrices in the adhesion and growth of cells, J. Cell Biol. 88: 473–485.PubMedGoogle Scholar
  80. Kleinman, H. K., Rohrbach, D. H., Terranova, V. P., Varner, H. H., Hewitt, A. T., Grotendorst, G. R., Wilkes, C. M., Martin, G. R., Seppä, H., and Schiffman, E., 1982a, Collagenous matrices as determinants of cell function, in: Immunochemistry of the Extracellular Matrix, Vol. II ( H. Furthmayr, ed.), pp. 151–174, CRC Press, Boca Raton, Fla.Google Scholar
  81. Kleinman, H. K., Woodley, D. T., McGarvey, M. L., Gehron Robey, P., Hassell, J. R., and Martin, G. R., 1982b, Interactions and assembly of basement membrane components, in: Extracellular Matrix ( S. Hawkes and J. Wang, eds.), pp. 45–52, Academic Press, New York.Google Scholar
  82. Kosher, R. A., and Church, R. L., 1975, Stimulation of in vitro chondrogenesis by pro-collagen and collagen, Nature (London) 258: 327–330.Google Scholar
  83. Kramer, J. M., Cox, G. N., and Hirsh, D., 1982, Comparisons of the complete sequences of two collagen genes from Caenorhabditis elegans, Cell 30: 599–606.PubMedGoogle Scholar
  84. Kresina, T., and Miller, E. J., 1979, Isolation and characterization of basement membrane collagen from human placental tissues—Evidence for the presence of two genetically distinct chains, Biochemistry 18: 3089–3097.PubMedGoogle Scholar
  85. Kühn, K., 1982, Chemical properties of collagen, in: Immunochemistry of the Extracellular Matrix, Vol. I ( H. Furthmayr, ed.), pp. 1–29, CRC Press, Boca Raton, Fla.Google Scholar
  86. Kühn, K., and van der Mark, K., 1978, The influence of proteoglycans on the macromolecular structure of collagen, in: Collagen-Platelet Interaction ( H. Gastpar, K. Kühn, and R. Marx, eds.), pp. 123–127, Schattauer Verlag, Stuttgart.Google Scholar
  87. Lapière, C. M., Lenaers, A., and Kohn, L. D., 1971, Procollagen peptidase: An enzyme excising the coordination peptides of procollagen, Proc. Natl. Acad. Sci. USA 68: 3054–3058.PubMedGoogle Scholar
  88. Lash, J. W., and Vasan, N. S., 1978, Somite chondrogenesis in vitro: Stimulation by exogenous extracellular matrix components, Dev. Biol. 66: 151–171.PubMedGoogle Scholar
  89. Laurie, G. W., Leblond, C. P., and Martin, G. R., 1982, Localization of type IV collagen, laminin, heparan sulfate proteoglycan and fibronectin to the basal lamina of basement membranes, J. Cell Biol. 95: 340–344.PubMedGoogle Scholar
  90. Leivo, I., Vaheri, A., Timpl, R., and Wartiovaara, J., 1980, Appearance and distribution of collagens and laminin in the early mouse embryo, Dev. Biol. 76: 100–114.PubMedGoogle Scholar
  91. Levitt, D., and Dorfman, A., 1974, Concepts and mechanisms of cartilage differentiation, Curr. Top. Dev. Biol. 8: 103–145.PubMedGoogle Scholar
  92. Levitt, D., Ho, P., and Dorfman, A., 1975, Effects of 5-bromodeoxyuridine on ultrastructure of developing limb bud cells in vitro, Dev. Biol. 43: 75–90.PubMedGoogle Scholar
  93. Lewis, C. A., Pratt, R. M., Pennypacker, J. P., and Hassell, J. R., 1978, Inhibition of limb chondrogenesis in vitro by vitamin A: Alterations in cell surface characteristics, Dev. Biol. 64: 31–47.PubMedGoogle Scholar
  94. Linder, E. A., Vaheri, A., Ruoslahti, E., and Wartiovaara, J., 1975, Distribution of fibroblast surface antigen in the developing chick embryo, J. Exp. Med. 142: 41–49.PubMedGoogle Scholar
  95. Liotta, L. A., Vembu, D., Kleinman, H. K., Martin, G. R., and Boone, C., 1978, Collagen required for proliferation of cultured connective tissue cells but not their transformed counterparts, Nature (London) 272: 622–624.Google Scholar
  96. Liotta, L. A., Abe, S., Gehron Robey, P., and Martin, G. R., 1979, Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumor, Proc. Natl. Acad. Sci. USA 76: 2268–2272.PubMedGoogle Scholar
  97. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., and Shafie, S., 1980, Metastatic potential correlates with enzymatic degradation of basement membrane collagen, Nature (London) 284: 67–68.Google Scholar
  98. Liotta, L. A., Lanzer, W. L., and Garbisa, S., 1981, Identification of a type V collagenolytic enzyme, Biochem. Biophys. Res. Commun. 98: 184–190.PubMedGoogle Scholar
  99. McDonald, J. A., Kelley, D. G., and Broekelmann, T. J., 1982, Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix, J. Cell Biol. 92: 485–492.PubMedGoogle Scholar
  100. McGarvey, M. L., Baron-Van Evercooren, A., Dubois-Dalcq, M., and Kleinman, H. K., 1983, Role of laminin in the adhesion and growth of rat Schwann cells (submitted). McLees, B. D., Schleiter, G., and Pinnell, S. R., 1977, Isolation of type III collagen from human adult parenchymal lung tissue, Biochemistry 16: 185–190.Google Scholar
  101. Madri, J. A., Roll, J., Furthmayr, H., and Foidart, J.-M., 1980, Ultrastructural localization of fibronectin and laminin in the basement membranes of the murine kidney, J. Cell Biol. 86: 682–687.PubMedGoogle Scholar
  102. Mainardi, C. L., Seyer, J. N., and Kang, A. H., 1980, Type specific collagenolysis of type V collagen degrading enzyme from macrophages, Biochem. Biophys. Res. Commun. 97: 1108–1115.PubMedGoogle Scholar
  103. Marquette, D. J., Molnar, K. M., Yamada, K. M., Schlesinger, D., Darby, S., and Van Alten, P., 1981, Phagocytosis-promoting activity of avian plasma and fibroblastic cell surface fibronectin, Mol. Cell. Biochem. 36: 147–155.PubMedGoogle Scholar
  104. Mayne, R., Vail, M. S., and Miller, E. J., 1978, Characterization of collagen chains synthesized by cultured smooth muscle cells derived from rhesus monkey thoracic aorta, Biochemistry 17: 446–452.PubMedGoogle Scholar
  105. Meier, S., and Hay, E. D., 1974, Control of corneal differentiation by extracellular materials: Collagen as a promoter and stabilizer of epithelial stroma production, Dev. Biol. 38: 249–270.PubMedGoogle Scholar
  106. Miller, E. J., and Matukas, V. J., 1969, Chick cartilage collagen: A new type of al chain not present in bone or skin of the species, Proc. Natl. Acad. Sci. USA 64: 1264–1268.PubMedGoogle Scholar
  107. Miller, E. J., and Matukas, V. J., 1974, Biosynthesis of collagen: The biochemist’s view, Fed. Proc. 33: 1197–1201.PubMedGoogle Scholar
  108. Miller, E. J., Epstein, E. H., and Piez, K. A., 1971, Identification of three genetically distinct collagens by cyanogen bromide cleavage of insoluble human skin and cartilage collagen, Biochem. Biophys. Res. Commun. 42: 1024–1029.PubMedGoogle Scholar
  109. Miller, E. J., Harris, E. D., Chung, E., Finch, J. E., Jr., McCroskery, P. A., and Butler, W. T., 1976, Cleavage of type II and III collagens with mammalian collagenase: Site of cleavage and primary structure at NH2 terminal position of the smaller fragments released from both collagens, Biochemistry 15: 787–792.PubMedGoogle Scholar
  110. Mosesson, M. V., Chen, A. B., and Huseby, R. M., 1975, The cold-insoluble globulin of human plasma: Studies of its essential structural features, Biochim. Biophys. Acta 386: 509–524.PubMedGoogle Scholar
  111. Murray, J. C., Stingl, G., Kleinman, H. K., Martin, G. R., and Katz, S. I., 1979, Epidermal cells adhere preferentially to type IV (basement membrane) collagen, J. Cell Biol. 80:197–202.Google Scholar
  112. Mynderse, L. A., Martinez-Hernandez, A., Hassell, J. R., Kleinman, H. K., and Martin, G. R., 1983, Loss of heparan sulfate proteoglycan from glomerular basement membrane of nephrotic rats, Lab. Invest., 48: 292–302.PubMedGoogle Scholar
  113. Newsome, D. A., 1976, In vitro stimulation of cartilage in embryonic chick neural crest cells by products of retinal pigmented epithelium, Dev. Biol. 49: 496–507.Google Scholar
  114. Nowack, H., Gay, S., Wick, G., Becker, U., and Timpl, R., 1976, Preparation and use of antibodies specific for type I and type III collagen and procollagen, J. Immunol. Methods 12: 117–124.PubMedGoogle Scholar
  115. Orkin, R. W., Gehron, P., McGoodwin, E. B., Martin, G. R., Valentine, T., and Swarm, R., 1977, A murine tumor producing a matrix of basement membrane, J. Exp. Med. 145: 204–220.PubMedGoogle Scholar
  116. Pasternack, S. G., Veis, A., and Breen, M., 1974, Solvent-dependent changes in proteoglycan subunit conformation in aqueous guanidine hydrochloride solutions, J. Biol. Chem. 249: 2206–2211.PubMedGoogle Scholar
  117. Pearlstein, E., 1976, Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen, Nature (London) 262: 497–500.Google Scholar
  118. Pennypacker, J. P., Hassell, J. R., Yamada, K. M., and Pratt, R. M., 1979, The influence of an adhesive cell surface protein on chondrogenic expression in vitro, Exp. Cell Res. 121: 411–415.PubMedGoogle Scholar
  119. Peterkofsky, B., and Diegelmann, R. F., 1971, Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins, Biochemistry 10: 988–994.PubMedGoogle Scholar
  120. Podleski, T. R., Greenberg, 1., Schlesinger, J., and Yamada, K. M., 1979, Fibronectin delays the fusion of L6 myoblasts, Exp. Cell Res. 122: 317–326.Google Scholar
  121. Poste, G., and Fidler, I. J., 1980, The pathogenesis of cancer metastasis, Nature (London) 283: 139–146.Google Scholar
  122. Prockop, D. J., Kivirikko, K. I., Tuderman, L., and Guzman, N. A., 1979, The biosynthesis of collagen and its disorders, N. Engl. J. Med. 301: 13–23, 77–85.Google Scholar
  123. Rao, C. N., Margulies, I. M. K., Tralka, T. S., Terranova, V. P., Madri, J. A., and Liotta, L. A., 1982, Isolation of a subunit of laminin and its role in molecular structure and tumor cell attachment, J. Biol. Chem. 257: 9740–9744.PubMedGoogle Scholar
  124. Reddi, A. H., and Anderson, W. A., 1976, Collagenous bone matrix-induced endochondral ossification and hemopoiesis, J. Cell Biol. 69: 557–572.PubMedGoogle Scholar
  125. Reid, K. B. M., and Porter, R. R., 1976, Subunit composition and structure of subcomponent Clq of the first component of human complement, Biochem. J. 155: 19–23.PubMedGoogle Scholar
  126. Rhodes, R. K., and Miller, E. J., 1978, Physiochemical characterization and molecular organization of the collagen A and B chains, Biochemistry 17: 3442–3448.PubMedGoogle Scholar
  127. Rohde, H., Wick, G., and Timpl, R., 1979, lmmunochemical characterization of the basement membrane glycoprotein, laminin, Eur. J. Biochem. 102: 195–201.Google Scholar
  128. Rojkind, M., Gatmaitan, Z., Mackensen, S., Giambrone, M.-A., Ponce, P., and Reid, L., 1980, Connective tissue biomatrix: Its isolation and utilization for long-term cultures of normal rat hepatocytes, J. Cell Biol. 87: 255–263.PubMedGoogle Scholar
  129. Rosenberry, T., and Richardson, J., 1977, Structure of 18S and 14S acetylcholinesterase: Identification of collagen-like subunits that are linked by disulfide bonds to catalytic subunits, Biochemistry 16: 3550–3558.PubMedGoogle Scholar
  130. Royal, P. D., and Goetinck, P. F., 1977, In vitro chondrogenesis in mouse limb mesenchymal cells: Changes in ultrastructure and proteoglycan synthesis, J. Embryo!. Exp. Morphol. 39: 79–95.Google Scholar
  131. Rubin, K., Oldberg, A., Höök, M., and Hbrink, B., 1978, Adhesion of rat hepatocytes to collagen, Exp. Cell Res. 117: 165–177.PubMedGoogle Scholar
  132. Rubin, K., Johansson, S., Pettersson, I., Ocklind, C., Hbrink, B., and Höök, M., 1979, Attachment of rat hepatocytes to collagen and fibronectin: A study using antibodies directed against cell surface components, Biochem. Biophys. Res. Commun. 91: 86–94.PubMedGoogle Scholar
  133. Rubin, K., Höök, M., Hbrink, B., and Timpl, R., 1981, Substrate adhesion of rat hepatocytes: Mechanism of attachment to collagen substrates, Cell 24: 463–470.PubMedGoogle Scholar
  134. Ruoslahti, E., Vaheri, A., Kuusela, P., and Linder, E., 1973, Fibroblast surface antigen: A new serum protein, Biochim. Biophys. Acta 322: 352–358.PubMedGoogle Scholar
  135. Ruoslahti, E., Engvall, E., and Hayman, E. G., 1981, Fibronectin: Current concepts of its structure and functions, Coll. Res. 1: 95–128.Google Scholar
  136. Sage, H., and Bornstein, P., 1979, Characterization of a novel collagen chain in human placenta and its relation to AB collagen, Biochemistry 18: 3815–3822.PubMedGoogle Scholar
  137. Sakashita, S., Engvall, E., and Ruoslahti, E., 1980, Basement membrane glycoprotein, laminin, binds to heparin, FEBS Lett. 116: 243–246.PubMedGoogle Scholar
  138. Seglen, P. O., and Fossä, J., 1978, Attachment of rat hepatocytes in vitro to substrata of serum protein, collagen, or concanavalin A, Exp. Cell Res. 116: 199–206.PubMedGoogle Scholar
  139. Seppä, H. E. J., Yamada, K. M., Seppä, S. T., Silver, M. H., Kleinman, H. K., and Schiffmann, E., 1981, The cell binding fragment of fibronectin is chemotactic for fibroblasts, Cell Biol. Int. Rep. 5: 813–820.PubMedGoogle Scholar
  140. Silver, M. H., Foidart, J.-M., and Pratt, R. M., 1981, Distribution of fibronectin and collagen during mouse limb and palate development, Differentiation 18: 141–149.PubMedGoogle Scholar
  141. Spooner, B. S., and Faubion, J. M., 1980, Collagen involvement in branching morphogenesis of embryonic lung and salivary gland, Dev. Biol. 77: 84–102.PubMedGoogle Scholar
  142. Stenman, S., and Vaheri, A., 1978, Distribution of a major connective tissue protein, fibronectin, in normal human tissues, J. Exp. Med. 147: 1054–1064.PubMedGoogle Scholar
  143. Szarfman, A., Terranova, V. P., Rennard, S. I., Foidart, J.-M., DeFatima Lima, M., Schein-man, J. I., and Martin, G. R., 1982, Antibodies to laminin in Chagas’ disease, J. Exp. Med. 155: 1161–1171.PubMedGoogle Scholar
  144. Tengblad, A., 1981, A comparative study of the binding of cartilage link protein and hyaluronate binding region of the cartilage proteoglycan to hyaluronate-substituted Sepharose gel, Biochem. J. 199: 297–305.PubMedGoogle Scholar
  145. Terranova, V. P., Rohrbach, D. H., and Martin, G. R., 1980, Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen, Cell 22: 719–726.PubMedGoogle Scholar
  146. Terranova, V. P., Liotta, L. A., Russo, R. G., and Martin, G. R., 1982, Role of laminin in the attachment and metastasis of murine tumor cells, Cancer Res. 42: 2265–2269.PubMedGoogle Scholar
  147. Terranova, V. P., Rao, C. N., Kalebic, T., Margulies, I. M., and Liotta, L. A., 1983a, Laminin receptor on human breast carcinoma cells, Proc. Natl. Acad. Sci. USA 80: 444–448.PubMedGoogle Scholar
  148. Terranova, V. P., Liotta, L. A., Vasanthakumar, G., Thorgeirsson, U., Siegal, G. P., and Schiffmann, E., 1983b, The role of laminin in the adherence and chemotaxis of neutrophils, Fed. Proc. FASEB 42: 2851–2852.Google Scholar
  149. Terranova, V. P., Kleinman, H. K., Sultan, L. H., and Martin, G. R., Regulation of cell attachment and cell number by fibronectin and laminin (submitted).Google Scholar
  150. Timpl, R., Martin, G. R., Bruckner, P., Wick, G., and Wiedemann, H., 1978, Nature of the collagenous protein in a tumor basement membrane, Eur. J. Biochem. 84: 43–52.PubMedGoogle Scholar
  151. Timpl, R., Rohde, H., Gehron Robey, P., Rennard, S. I., Foidart, J.-M., and Martin, G. R., 1979, Laminin—A glycoprotein from basement membranes, J. Biol. Chem. 254: 9933–9937.PubMedGoogle Scholar
  152. Timpl, R., Wiedermann, H., Van Delden, V., Furthmayr, H., and Kühn, K., 1981, A network model for the organization of type IV collagen molecules in basement membranes, Eur. J. Biochem. 120: 203–211.PubMedGoogle Scholar
  153. Tomasek, J. J., Mazurkiewicz, J. E., and Newman, S. A., 1982, Nonuniform distribution of fibronectin during avian limb development, Dev. Biol. 90: 118–126.PubMedGoogle Scholar
  154. Trelstad, R. L., 1974, Human aorta collagens: Evidence for three distinct species, Biochem. Biophys. Res. Commun. 57: 717–725.PubMedGoogle Scholar
  155. Trelstad, R. L., and Coulombre, A. J., 1971, Morphogenesis of the collagenous stroma in the chick cornea, J. Cell Biol. 50: 840–858.PubMedGoogle Scholar
  156. Trelstad, R. L., Hayashi, K., and Toole, B. P., 1974, Epithelial collagens and glycosaminoglycans in the embryonic cornea: Macromolecular order and morphogenesis in the basement membrane, J. Cell Biol. 62: 815–830.PubMedGoogle Scholar
  157. Tryggvason, K., Gehron Robey, P., and Martin, G. R., 1980, Biosynthesis of type 1V pro-collagens, Biochemistry 19: 1284–1289.PubMedGoogle Scholar
  158. Uitto, J., and Prockop, D. J., 1974, Incorporation of proline analogues into collagen polypeptides: Effects on the production of extracellular procollagen and on the stability of the triple-helical structure of the molecule, Biochim. Biophys. Acta 336: 234–251.Google Scholar
  159. Vaheri, A., Ruoslahti, B., Westermark, B., and Pontén, J., 1976, A common cell-type specific surface antigen in cultured human glial cells and fibroblasts: Loss in malignant cells, J. Exp. Med. 143: 64–72.PubMedGoogle Scholar
  160. Vaheri, A., Kurkinen, M., Lehto, V.-P., Linder, E., and Timpl, R., 1978, Codistribution of pericellular matrix proteins in cultured fibroblasts and loss with transformation: Fibronectin and procollagen, Proc. Natl. Acad. Sci. USA 75: 4944–4948.PubMedGoogle Scholar
  161. Varner, H. H., Hewitt, A. T., Furthmayr, H., Fietzek, P. P., Nilsson, B. B., Osborne, J. C., Jr., DeLuca, S., and Martin, G. R., Further characterization of chondronectin, the chondrocyte attachment factor, (submitted).Google Scholar
  162. Vembu, D., Liotta, L. A., Paranjpe, N., and Boone, C. W., 1979, Correlation of tumorigenicity with resistance to growth inhibition by cis-hydroxyproline, Exp. Cell Res. 124: 247–252.PubMedGoogle Scholar
  163. Villiger, B., Kelley, D. G., Engleman, W., Kuhn, C., and McDonald, J. A., 1981, Human alveolar macrophage fibronectin: Synthesis, secretion, and ultrastructural localization during gelatin-coated latex particle binding, J. Cell Biol. 90: 711–720.PubMedGoogle Scholar
  164. Voss, B., Allah, S., Rauterberg, J., Ullrich, K., Gieselmann, V., and Von Figura, K., 1979, Primary cultures of rat hepatocytes synthesize fibronectin, Biochem. Biophys. Res. Commun. 90: 1348–1354.PubMedGoogle Scholar
  165. Vuento, M., Vartio, T., Saraste, M., von Bonsdorff, C. H., and Vaheri, A., 1980, Spontaneous and polyamine-induced formation of filamentous polymers from soluble fibronectin, Eur. J. Biochem. 105: 33–42.PubMedGoogle Scholar
  166. Wartiovaara, J., Leivo, I., and Vaheri, A., 1979, Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo, Dell. Biol. 69: 247–257.Google Scholar
  167. Weiss, R. E., and Reddi, A. H., 1980, Synthesis and localization of fibronectin during collagenous matrix–mesenchymal cell interaction and differentiation of cartilage and bone in vivo, Proc. Natl. Acad. Sci. USA 77: 2074–2078.PubMedGoogle Scholar
  168. West, C. M., Lanza, R., Rosenbloom, J., Lowe, M., Holtzer, H., and Avdalovic, N., 1979, Fibronectin alters the phenotypic properties of cultured chick embryo chondroblasts, Cell 17: 491–501.PubMedGoogle Scholar
  169. Wicha, M., Liotta, L. A., Garbisa, S., and Kidwell, W. R., 1979, Basement membrane collagen requirements for attachment and growth of mammary epithelium, Exp. Cell Res. 124: 181–190.PubMedGoogle Scholar
  170. Woodley, D. T., Rao, C. N., Hassell, J. R., Liotta, L. A., Martin, G. R., and Kleinman, H. K., 1983, Interactions of basement membrane components, Biochem. Biophys. Acta. 761: 278–283.PubMedGoogle Scholar
  171. Woolley, D. E., Glanville, R. W., Roberts, D. R., and Evanson, J. M., 1978, Purification, characterization and inhibition of human skin collagenase, Biochem. J. 169:265–276.PubMedGoogle Scholar
  172. Yamada, K. M., and Olden, K., 1978, Fibronectins—Adhesive glycoproteins of cell surface and blood, Nature (London) 275: 179–184.Google Scholar
  173. Yamada, K. M., and Weston, J. A., 1974, Isolation of a major cell surface glycoprotein from fibroblasts, Proc. Natl. Acad. Sci. USA 71: 3492–3496.PubMedGoogle Scholar
  174. Yamada, K. M., Yamada, S. S., and Pastan, I., 1976, Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts, Proc. Natl. Acad. Sci. USA 73: 1217–1221.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. Tyl Hewitt
    • 1
  • George R. Martin
    • 2
  1. 1.Wynn Center for the Study of Retinal Degenerations, The Wilmer Ophthalmological InstituteThe Johns Hopkins HospitalBaltimoreUSA
  2. 2.Laboratory of Developmental Biology and Anomalies, National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations