Advertisement

A Novel System Using the Expression of Chloramphenicol Acetyltransferase in Eukaryotic Cells Allows the Quantitative Study of Promoter Elements

  • Cornelia Gorman
  • Laimomis Laimons
  • Glenn T. Merlino
  • Peter Gruss
  • George Khoury
  • Bruce Howard
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

As the number of isolated putative eukaryotic promoter sequences has increased, so has the need for an accurate means of measuring the function of these sequences. The in vitro transcription systems developed by Manley et al. (1980) and Weil et al. (1979) offer one approach. However, it is becoming clear that the in vitro transcription systems may respond to different regulatory signals and thus do not afford the ideal system for the study of in vivo transcriptional control (Benoist and Chambon, 1980). The study of promoters after introduction into tissue-culture cells is crucial.

Keywords

Herpes Simplex Virus Type Long Terminal Repeat Thymidine Kinase Rous Sarcoma Virus Chloramphenicol Acetyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benoist, C., and Chambon, P., 1980, Deletions covering the putative promoter region of early mRNAs of simian virus 40 do not abolish T-antigen expression, Proc. Natl. Acad. Sci. U.S.A. 77: 3865–3869.PubMedCrossRefGoogle Scholar
  2. Benoist, C., and Chambon, P., 1981, In vivo sequence requirements of the SV40 early promoter region, Nature (London) 290: 304–310.CrossRefGoogle Scholar
  3. Cohen, J., Eccleshall, T., Needleman, R., Federoff, H., Buchferer, B., and Marmur, J., 1980, Functional expression in yeast of the Escherichia coli plasmid gene coding for chloramphenicol acetyltransferase, Proc. Natl. Acad. Sci. U.S.A. 77: 1078–1082.PubMedCrossRefGoogle Scholar
  4. De Villiers, J., and Schaffner, W., 1981, A small segment of polyoma virus DNA enhances the expression of a cloned 3-globin gene over a distance of 1400 base pairs, Nucleic Acid Res. 9: 6251–6264.PubMedCrossRefGoogle Scholar
  5. Gorman, C., Moffat, L., and Howard, B., 1982a, Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells, Mol. Cell. Biol. 2: 1044–1051.PubMedGoogle Scholar
  6. Gorman C., Merlino, G., Willingham, M., Pastan, I., and Howard, B., 1982b, The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA mediated transfection, Proc. Natl. Acad. Sci. U.S.A. 77: 6777–6781.CrossRefGoogle Scholar
  7. Graham, F., and van der Eb, A., 1978, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52: 456–457.CrossRefGoogle Scholar
  8. Gruss, P., Dhar, R., and Khoury, G., 1981, Simian virus 40 tandem repeated sequences as an element of the early promoter, Proc. Natl. Acad. Sci. U.S.A. 78: 943–947.PubMedCrossRefGoogle Scholar
  9. Kozak, M., 1978, How do eukaryotic ribosomes select initiation regions in messenger RNA?, Cell 15: 1109–1123.PubMedCrossRefGoogle Scholar
  10. Laimons, L., Khoury, G., Gorman, C., Howard, B., and Gruss, P., 1982, Host specific activation of transcription by tandem repeats from SV40 and Moloney murine sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 79: 6453–6457.CrossRefGoogle Scholar
  11. Levinson, B., Khoury, G., Vande Woude, G., and Gruss, P., 1982, Activation of SV40 genome by 72-base pair tandem repeats of Moloney sarcoma virus, Nature (London) 295: 568–572.CrossRefGoogle Scholar
  12. Manley, J., Fire, A., Cano, A., Sharp, P., and Gefter, M., 1980, DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract, Proc. Natl. Acad. Sci. U.S.A. 77: 3855–3859.PubMedCrossRefGoogle Scholar
  13. Mellon, P., Parker, V., Gluzman, Y., and Maniatis, T., 1981, Identification of DNA sequences required for transcription of the human al globin gene in a new SV40 host—vector system, Cell 27: 279–288.PubMedCrossRefGoogle Scholar
  14. Merlino, G., Vogeli, G., Yamamoto, T., de Crombrugghe, B., and Pastan, I., 1981, Accurate in vitro transcriptional initiation of the chick a2 (I) collagen gene, J. Biol. Chem. 256: 11251–11258.PubMedGoogle Scholar
  15. Moreau, P., Hen, R., Wasylyk, B., Everett, R., Gaub, M., and Chambon, P., 1981, The SV40 72 base pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants, Nucleic Acids Res. 9: 6047–6068.PubMedCrossRefGoogle Scholar
  16. Mulligan, R., and Berg, P., 1980, Expression of a bacterial gene in mammalian cells, Science 209: 1422–1427.PubMedCrossRefGoogle Scholar
  17. Mulligan, R., and Berg, P., 1981, Factors governing the expression of bacterial genome, Mol. Cell. Biol. 1: 449–459.PubMedGoogle Scholar
  18. Mulligan, R., Howard, B., and Berg, P., 1979, Synthesis of rabbit ß-globin in cultured monkey cells following infection with a S V4013-globin recombinant gene in mammalian cells, Nature (London) 277: 108–114.CrossRefGoogle Scholar
  19. Parker, B., and Stark, G., 1979, Regulation of simian virus 40 transcription: Sensitive analysis of the RNA species present early in infections by virus or viral DNA, J. Virol. 31: 360–369.PubMedGoogle Scholar
  20. Radloff, R., Bauer, W., and Vinograd, J., 1967, A dye buoyant-density method for the detection and isolation of closed circular duplex DNA: The closed circular DNA in HeLa cells, Proc. Natl. Acad. Sci. U.S.A. 57: 1514–1521.PubMedCrossRefGoogle Scholar
  21. Robinson, L., Seligohn, R., and Lerner, S., 1978, Simplified radioenzymatic assay for chloramphenicol, Antimicrob. Agents Chemother. 13: 25–29.CrossRefGoogle Scholar
  22. Schumperli, D., Howard, B., and Rosenberg, M., 1982, Efficient expression of Escherichia coli galactokinase gene in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 79: 257.PubMedCrossRefGoogle Scholar
  23. Scott, J., 1973, Phage Pl cryptic: Location and regulation of prophage genes, Virology 53: 327–336.PubMedCrossRefGoogle Scholar
  24. Shaw, W., 1967, The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli, J. Biol. Chem. 242: 687–693.PubMedGoogle Scholar
  25. Shaw, W., 1975, Chloramphenicol acetyltransferase from resistant bacteria, Methods Enzymol. 53: 737–754.CrossRefGoogle Scholar
  26. Shaw, W., and Brodsky, R., 1978, Characterization of chloramphenicol acetyltransferase from chloramphenicol resistant Staphylococcus aureus, J. Bacteriol. 95: 28–36.Google Scholar
  27. Smith, A., and Smith, P., 1978, Improved enzymatic assay of chloramphenicol, Clin. Chem. 24: 1452–1457.PubMedGoogle Scholar
  28. Southern, P., and Berg, P., 1982, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J. Mol. Appl. Genet. 1: 327–341.PubMedGoogle Scholar
  29. Southern, P., Howard, B., and Berg, P., 1981, Construction and characterization of SV40 recombinants with 3-globin cDNA substitutions in their early region, J. Mol. Appl. Genet. 1: 177–190.PubMedGoogle Scholar
  30. Summers, W., and Summers, W., 1977, 125-I deoxycytidine used in a rapid, sensitive, and specific assay for herpes simplex virus type 1 thymidine kinase, J. Virol. 24: 314–318.PubMedGoogle Scholar
  31. Vogeli, G., Ohkubo, H., Sobel, M., Yamada, Y., Pastan, I., and de Crombrugghe, B., 1981, Structure of the promoter of chicken a2 type I collagen gene, Proc. Natl. Acad. Sci. U.S.A. 78: 5334–5338.PubMedCrossRefGoogle Scholar
  32. Wagner, M., Sharp, J., and Summers, W., 1981, Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1, Proc. Natl. Acad. Sci. U.S.A. 78: 1443–1445.Google Scholar
  33. Weil, P., Luse, D., Segall, J., and Roeder, R., 1979, Selective and accurate initiation of transcription at the Ad 2 major late promoter on a soluble system dependent on purified RNA polymerase II and DNA, Cell 18: 469–484.PubMedCrossRefGoogle Scholar
  34. Yamamoto, T., de Crombrugghe, B., and Pastan, I., 1980, Identification of a functional promoter of Rous sarcoma virus, Cell 22: 787–797.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Cornelia Gorman
    • 1
  • Laimomis Laimons
    • 2
  • Glenn T. Merlino
    • 1
  • Peter Gruss
    • 2
  • George Khoury
    • 2
  • Bruce Howard
    • 1
  1. 1.Laboratory of Molecular BiologyNational Cancer Institute, National Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Molecular VirologyNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations