Advertisement

Cloning and Structure Analysis of Histocompatibility Class I and Class II Genes

  • Ashwani K. Sood
  • Julian Pan
  • Paul A. Biro
  • Dennis Pereira
  • Vemuri B. Reddy
  • Hriday K. Das
  • Sherman M. Weissman
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

The major histocompatibility complex in vertebrates consists of a number of closely linked genetic loci that encode a variety of cell-surface glycoproteins and serum proteins known as histocompatibility antigens (Klein, 1975). Through these antigens, the cells of the immune system interact and thus regulate the antibody and cellular immune response to foreign antigens (Zinkernagel and Doherty, 1974; Klein, 1979). Biochemically, these antigens have been subdivided into three classes on the basis of structural and functional homology (Ploegh et al., 1981). Thus, the class I antigens (HLA-A, B, C; H2K, D, L) are cell-surface glycoproteins composed of two polypeptide subunits. The heavy chain carries the antigenic determinants and is in noncovalent association with β2-microglobulin. Similarly, the class II antigens are also composed of two polypeptide chains. Significant features of these antigens are that they are highly polymorphic within the population. At least 35 alleles are known at the HLA-B locus, 20 at the HLA-A locus, and fewer than 10 at the HLA-C locus. In the mouse, the extent of polymorphism at the class I loci is even higher; i.e., close to 100 alleles at both the H2-K and -D loci. In contrast, the polymorphism at the HLA-D locus is only beginning to be uncovered with recent definitions of multiple loci encoding these antigens (Tanigachi et al.,1980; Shaw et al., 1981; Shackelford et al., 1981).

Keywords

Termination Codon cDNA Product Histocompatibility Antigen cDNA Synthesis Reaction Histocompatibility Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltimore, D., 1981, Gene conversion: Some implications for imrnunoglobin genes, Cell 24: 592–594.PubMedCrossRefGoogle Scholar
  2. Coligan, J. E., Kindt, J. J., Uehara, H., Martinko, J., and Nathenson, S. G., 1981, Primary structure of a murine transplantation antigen, Nature (London) 291: 35–39.CrossRefGoogle Scholar
  3. Cosman, D., Khoury, G., and Jay, G., 1981, Three classes of mouse H-2 messenger RNA distinguished by analaysis of cDNA clones, Nature (London) 295: 73–76.CrossRefGoogle Scholar
  4. Das, H. K., Lawrance, S., and Weissman, S. M., 1984, Nucleotide sequence of the gene encoding the a-subunit of HLA-DR polypeptide, Proc. Natl. Acad. Sci. U.S.A. (submitted).Google Scholar
  5. Evans, G. A., Margulies, D. H., Camerini-Otero, R. D., Ozato, K., and Seidman, J. G., 1982, Structure and expression of a mouse major histocompatibility antigen gene H2L, Proc. Natl. Acad. Sci. U.S.A. 79: 1994.PubMedCrossRefGoogle Scholar
  6. Gmur, G., Solter, D., and Knowles, B. B., 1980, Independent regulation of H2K and HsD gene expression in murine teratocarcinoma cell hybrids, J. Exp. Med. 151: 1349–1359.PubMedCrossRefGoogle Scholar
  7. Goodfellow, P. N., Banting, G., Trowsdale, J., Chambers, S., and Solomon, E., 1982, Introduction of a human X-6 translocation chromosome into a mouse teratocarcinoma: Investigation of control of HLA-A, B, C expression, Proc. Natl. Acad. Sci. U.S.A. 79: 1190–1194.PubMedCrossRefGoogle Scholar
  8. Klein, J., 1975, Biology of the Mouse Histocomptability Complex, Springer-Verlag, Berlin. Klein, J., 1979, The major histocompatibility complex of mouse, Science 203: 516–521.Google Scholar
  9. Lopez de Castro, J. A., Strominger, J. L., Strong, D. M., and Orr, H. T., 1982, Structure of cross-reactive human histocompatibility antigens HLA-A28 and HLA-A2: Possible implications for the generation of HLA polymorphism, Proc. Natl. Acad. Sci. U.S.A. 79: 3813–3817.CrossRefGoogle Scholar
  10. Malissen, M., Malissen, B., and Jordan, B. R., 1982, Exon/intron organization and complete nucleotide sequence of an HLA gene, Proc. Natl. Acad. Sci. U.S.A. 79: 893–897.PubMedCrossRefGoogle Scholar
  11. Maxam, A., and Gilbert, W., 1977, Sequencing end-labeled DNA with base specific chemical cleavages, Methods Enzymol. 65: 499–599.CrossRefGoogle Scholar
  12. Miller, R. A., and Ruddle, F. H., 1977, Properties of teratocarcinoma—thymus somatic cell hybrids, Somat. Cell Genet. 3: 247–261.PubMedCrossRefGoogle Scholar
  13. Moore, K. W., Taylor, Sher, B., Sun, Y. H., Eakle, K. A., and Hood, L., 1982, DNA sequence of a gene encoding a Balb C mouse L transplantation antigen, Science 215: 679–682.PubMedCrossRefGoogle Scholar
  14. Nairn, R., Yamaga, K., and Nathenson, S. G., 1980, Biochemistry of the gene products from murine MHC mutants, Annu. Rev. Genet. 14: 241–277.PubMedCrossRefGoogle Scholar
  15. On, H. T., Lopez de Castro, J. A., Parham, P., Pleogh, H. L., and Strominger, J. L., 1979, Comparison of amino acid sequences of two human histocompatibility antigens HLA-A2 and HLA-B7: Location of putative alloantigenic sites, Proc. Natl. Acad. Sci. U.S.A. 76: 4395–4399.CrossRefGoogle Scholar
  16. Ploegh, H. L., On, H. T., and Strominger, J. L., 1981, Major histocompatibility antigens: The human (HLA-A, B, C) and murine (H2-K, D) class I molecules, Cell 24: 287–299.PubMedCrossRefGoogle Scholar
  17. Pober, J. S., and Strominger, J. L., 1981, Transglutaminase modifies the carboxy-terminal intracellular region of HLA-A and B-antigens, Nature (London) 289: 819–821.CrossRefGoogle Scholar
  18. Pober, J. S., Guild, B. C., Strominger, J. L., and Weatch, W. R., 1981, Purification of HLAA2 antigen, fluorescent labeling of its intracellular region, and demonstration of an interaction between fluorescently labeled HLA-A2 antigen and lymphoblastoid cell cytoskeleton proteins in vitro, Biochemistry 20: 5625–5633.PubMedCrossRefGoogle Scholar
  19. Proudfoot, N. J., and Brownlee, G. G., 1976, Noncoding sequences in eucaryotic messenger RNA, Nature (London) 263: 211–214.CrossRefGoogle Scholar
  20. Shackelford, D. A., Mann, D. A., Van Rood, J. J., Ferrara, G. B., and Strominger, J. L., 1981, Human B cell alloantigens DC1, MT1 and LB12 are identical to each other but distinct from HLA-DR antigen, Proc. Natl. Acad. Sci. U.S.A. 7: 4566–4570.CrossRefGoogle Scholar
  21. Shaw, S., Kavathas, P., Pollack, M. S., Charmot, D., and Mawas, C., 1981, Family studies define a new histocompatibility locus, SB between HLA-DR and GLO, Nature (London) 299: 745–747.CrossRefGoogle Scholar
  22. Sood, A. K., Pereira, D. and Weissman, S. M., 1981, Isolation of a cDNA clone for human histocompatibility antigen HLA-B by use of an oligodeoxynucleotide primer, Proc. Natl. Acad. Sci. U.S.A. 78: 616–620.PubMedCrossRefGoogle Scholar
  23. Steinmetz, M., Moore, K. W., Frelinger, J. G., Shen, F., Boyse, E. A., and Hood, L., 1981, A pseudogene homologous to mouse transplantation antigens: Transplantation antigens are encoded by eight exons that correlate with protein domains, Cell 25: 683–692.PubMedCrossRefGoogle Scholar
  24. Tanigachi, N., Tosi, R., and Pressman, D., 1980, Molecular identification of human Ia antigens coded for by a gene locus closely linked to HLA-DR locus, Immunogenetics 10: 151–167.CrossRefGoogle Scholar
  25. Williams, R. A., Hart, D. N. J., Fabre, J. W., and Morris, P. J., 1980, Distribution and quantitation of HLA-A, B, C and DR(Ia) antigens on human kidney and other tissues, Transplantation 29: 274–279.PubMedCrossRefGoogle Scholar
  26. Zinkernagel, R. M., and Doherty, P. C., 1974, Restriction of in vitro T cell mediated cytotoxicity in lymphocyte choriomeningitis within a syngeneic or a semi-allogeneic system of mouse, Science 203: 516–521.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Ashwani K. Sood
    • 1
  • Julian Pan
    • 1
  • Paul A. Biro
    • 1
  • Dennis Pereira
    • 1
  • Vemuri B. Reddy
    • 1
  • Hriday K. Das
    • 1
  • Sherman M. Weissman
    • 1
  1. 1.Department of Human GeneticsYale University School of MedicineNew HavenUSA

Personalised recommendations