Skip to main content

Mechanisms for Evolutionary Divergence within the Prolactin Gene Family

  • Chapter
Eukaryotic Gene Expression
  • 34 Accesses

Abstract

Transcriptional control of the expression of eukaryotic genes encoding proteins appears to be regulated both by DNA structures far removed from the gene (Klar et al., 1981; Nasmyth et al., 1981) and by signals found immediately upstream from the start of transcription (Breathnach and Chambon, 1981). The differential expression of members within a family of genes could therefore be dependent on structural differences adjacent to those genes. The exact location and nature of several of these adjacent regulatory regions have been examined in detail. The TATAA homology that occurs 20–30 base pairs (bp) 5′ to the start of transcription appears to specify the nucleotide at which RNA synthesis begins (Corden et al., 1980). A second set of sequences that are necessary for transcriptional efficiency is located upstream from the TATAA homology. The exact site of these modulating regions has recently been determined for the thymidine kinase gene of herpes simplex virus (McKnight and Kingsbury, 1982). In this gene, mutations in a guanine-rich segment between bases −7 and −61 and a cytosine-rich segment between bases −80 and −105 markedly decrease the efficiency of transcription. Although the −61 to −80 region of this gene contains the “CAAT” homology (Benoist et al., 1980; Efstratiadis et al., 1980; Liebhaber et al., 1980) found in a wide variety of genes, it does not appear to affect the level of thymidine kinase gene transcription. Steroid hormones induce transcription in a number of genes. DNA sequences necessary for this induction have been shown to be linked to the 5′ flanking region of such glucocorticoid-induced genes (Hynes et al., 1981; Lee et al., 1981; Robins et al., 1982). Further information on specific regulatory structures within other protein-coding genes may be obtained by comparison of the structure of genes within a family that are expressed differentially in response to different signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barta, A., Richards, R. I., Baxter, J. D., and Shine, J., 1981, Primary structure and evolution of rat growth hormone gene, Proc. Natl. Acad. Sci. U.S.A. 78: 4867–4871.

    Article  PubMed  CAS  Google Scholar 

  • Bell, G. I., Pictet, R., and Rutter, W. J., 1980, Analysis of the region flanking the insulin gene and sequence of an Alu family member, Nucleic Acids Res. 8: 4091–4109.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Jonathan, N., Oliver, C., Weiner, H. J., Mical, R. S., and Porter, J. C., 1977, Dopamine in hypophysial portal plasma of the rat during the estrous cycle and throughout pregnancy, Endocrinology 100: 452–458.

    Article  PubMed  CAS  Google Scholar 

  • Benoist, C., O’Hare, K., Breathnach, R., and Chambon, P., 1980, The ovalbumin gene-sequence of putative control regions, Nucleic Acids Res. 8: 127–142.

    Article  PubMed  CAS  Google Scholar 

  • Breathnach, R., and Chambon, P., 1981, Organization and expression of eukaryotic split genes encoding for proteins, Annu. Rev. Biochem. 50: 349–383.

    Article  PubMed  CAS  Google Scholar 

  • Breathnach, R., Benoist, C., O’Hare, K., Gannon, F., and Chambon, P., 1978, Ovalbumin gene: Evidence for a leader sequence in mRNA and DNA sequences at the exon—intron boundaries, Proc. Natl. Acad. Sci. U.S.A. 75: 4853–4857.

    Article  PubMed  CAS  Google Scholar 

  • Calabretto, B., Robberson, D. L., Barrera-Saldana, H. A., Lambrou, T. P., and Saunders, G. F., 1982, Genome instability in a region of human DNA enriched in Alu repeat sequences, Nature (London) 296: 219–225.

    Article  Google Scholar 

  • Calos, M. P., and Miller, J. H., 1980, Transposable elements, Cell 20: 579–595.

    Article  PubMed  CAS  Google Scholar 

  • Cochet, M., Gannon, F., Hen, R., Maroteaux, L., Perrin, F., and Chambon, P., 1979, Organization and sequence studies of the 17-piece chicken conalbumin gene, Nature (London) 282: 567–574.

    Article  CAS  Google Scholar 

  • Cooke, N. E., and Baxter, J. D., 1982, Structural analysis of the prolactin gene suggests a separate origin for its 5’ end, Nature (London) 297: 603–606.

    Article  CAS  Google Scholar 

  • Cooke, N. E., Coit, D., Weiner, R. I., Baxter, J. D., and Martial, J. A., 1980, Structure of cloned DNA complementary to rat prolactin messenger RNA, J. Biol. Chem. 255: 6502–6510.

    PubMed  CAS  Google Scholar 

  • Cooke, N. E., Coit, D., Shine, J., Baxter, J. D., and Martial, J. A., 1981, Human prolactin: cDNA structural analysis and evolutionary comparisons, J. Biol. Chem. 256: 4007–4016.

    PubMed  CAS  Google Scholar 

  • Corden, J., Wasylyk, A., Buchwalder, P., Sassone-Corsi, D., Kedinger, P., and Chambon, P., 1980, Promoter sequences of eukaryotic protein-coding genes, Science 209: 1406–1414.

    Article  PubMed  CAS  Google Scholar 

  • Daughaday, W. H., 1981, The adenohypophysis, in: Textbook of Endocrinology ( R. H. Williams, ed.), pp. 73–116, W. B. Saunders, Philadelphia.

    Google Scholar 

  • DeNoto, F. M., Moore, D. D., and Goodman, H. M., 1981, Human growth hormone DNA sequence and mRNA structure: Possible altemative splicing, Nucleic Acids Res. 9: 3719–3730.

    Article  PubMed  CAS  Google Scholar 

  • Efstratiadis, A., Posakony, J. W., Maniatis, T., Lawn, R. M., O’Connell, C., Spritz, R. A., DeRiel, J. K., Forget, B. G., Weissman, S. M., Slightom, J. L., Blechl, A. E., Smithies, O., Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J., 1980, The structure and evolution of the human ß-globin gene family, Cell 21: 653–668.

    Article  PubMed  CAS  Google Scholar 

  • Frohman, L. A., Maran, J. W., and Dhariwal, P. S., 1971, Plasma growth hormone responses to intrapituitary injections of growth hormone releasing factor (GRF) in the rat, Endocrinology 88: 1483–1488.

    Article  PubMed  CAS  Google Scholar 

  • Gubbins, E. J., Maurer, R. A., Lagrimini, M., Erwin, C. R., and Donelson, J. E., 1980, Structure of the rat prolactin gene, J. Biol. Chem. 255: 8655–8662.

    PubMed  CAS  Google Scholar 

  • Hynes, N. E., Kennedy, N., Rahmsdorf, U., and Groner, B., 1981, Hormone-responsive expression of an endogenous proviral gene of mouse mammary tumor virus after molecular cloning and gene transfer into cultured cells, Proc. Natl. Acad. Sci. U.S.A. 78: 2038–2042.

    Article  PubMed  CAS  Google Scholar 

  • Jelinek, W. R., and Schmid, C. W., 1982, Repetitive sequences in eukaryotic DNA and their expression, Annu. Rev. Biochem. 51: 813–844.

    Article  PubMed  CAS  Google Scholar 

  • Klar, A. J. S., Strathern, J. N., Broach, J. R., and Hicks, J. B., 1981, Regulation of transcription in expressed and unexpressed mating type cassettes of yeast, Nature (London) 289: 239–244.

    Article  CAS  Google Scholar 

  • Krulich, L., Dhariwhal, A. P. S., and McCann, S. M., 1968, Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro, Endocrinology 83: 783–790.

    Article  PubMed  CAS  Google Scholar 

  • Lee, F., Mulligan, R., Berg, P., and Ringold, G., 1981, Glucocorticoids regulate expression of dihydrofolate reductase cDNA in mouse mammary tumour virus chimaeric plasmids, Nature (London) 294: 228–233.

    Article  CAS  Google Scholar 

  • Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L., and Steitz, J. A., 1980, Are snRNPs involved in splicing?, Nature (London) 283: 220–224.

    Article  CAS  Google Scholar 

  • Liebhaber, S. A., Goosens, M. J., and Kan, Y. W., 1980, Cloning and complete nucleotide sequence of human 5’-a-globin gene, Proc. Natl. Acad. Sci. U.S.A. 77: 7054–7058.

    Article  PubMed  CAS  Google Scholar 

  • Martial, J. A., Hallewell, R. A., Baxter, J. D., and Goodman, H. M., 1979, Human growth hormone: Complementary DNA cloning and expression in bacteria, Science 205: 602–607.

    Article  PubMed  CAS  Google Scholar 

  • Martin, T. F. J., and Tashjian, A. H., 1977, Cell culture studies of thyrotropin-releasing hormone action, in: Biochemical Action of Hormones ( G. Litwack, ed.), pp. 269–312, Academic Press, New York.

    Chapter  Google Scholar 

  • Maurer, R. A., 1980, Dopaminergic inhibition of prolactin synthesis and prolactin messenger RNA accumulation in cultured pituitary cells, J. Biol. Chem. 255: 8092–8097.

    PubMed  CAS  Google Scholar 

  • Maurer, R. A., Erwin, C. R., and Donelson, J. E., 1981, Analysis of 5’ flanking sequences and intron—exon boundaries of the rat prolactin gene, J. Biol. Chem. 256: 10524–10528.

    PubMed  CAS  Google Scholar 

  • McKenna, M. G., 1969, The origin and early differentiation of therian mammals, Ann. N. Y. Acad. Sci. 167: 217–240.

    Article  Google Scholar 

  • McKnight, S. L., and Kingsbury, R., 1982, Transcriptional control signals of a eukaryotic protein-coding gene, Science 217: 316–324.

    Article  PubMed  CAS  Google Scholar 

  • Moore, D. D., Conkling, M. A., and Goodman, H. M., 1982, Human growth hormone: A multi-gene family, Cell 29: 285–286.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth, K. A., Tatchell, K., Hall, B. D., Astell, C., and Smith, M., 1981, A position effect in the control of transcription at yeast mating type loci, Nature (London) 289: 244–250.

    Article  CAS  Google Scholar 

  • Niall, H. D., Hogan, M. L., Sauer, R., Rosenbaum, I. Y., and Greenwood, F. C., 1971, Sequences of pituitary and placental lactogenic and growth hormones: Evolution from a primordial peptide by gene reduplication, Proc. Natl. Acad. Sci. U.S.A. 68: 866–869.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, C. S., and Meites, J., 1964, Prolactin secretion in vitro: Effects of gonadal and adrenal cortical steroids, Proc. Soc. Exp. Biol. Med. 117: 579–581.

    PubMed  CAS  Google Scholar 

  • Owerbach, D., Rutter, W. J., Martial, J. A., Baxter, J. D., and Shows, T. B., 1980, Genes for growth hormone, chorionic somatomammotropin, and growth hormone-like gene on chromosome 17 in humans, Science 207: 289–292.

    Article  Google Scholar 

  • Owerbach, D., Rutter, W. J., Cooke, N. E., Martial, J. A., and Shows, T. B., 1981, The prolactin gene is located on chromosome 6 in humans, Science 212: 815–816.

    Article  PubMed  CAS  Google Scholar 

  • Page, G. S., Smith, S., and Goodman, H. M., 1981, DNA sequence of the rat growth hormone gene: Location of the 5’ terminus of the growth hormone mRNA and identification of an internal transposon-like element, Nucleic Acids Res. 9: 2087–2104.

    Article  PubMed  CAS  Google Scholar 

  • Robins, D. M., Paek, I., Seeburg, P. H., and Axel, R., 1982, Regulated expression of human growth hormone genes in mouse cells, Cell 29: 623–631.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J., and Wall, R., 1980, A mechanism for RNA splicing, Proc. Natl. Acad. Sci. U.S.A. 77: 1877–1879.

    Article  PubMed  CAS  Google Scholar 

  • Romero-Herrera, A. E., Lehman, H., Joysey, K. A., and Friday, A. E., 1973, Molecular evolution of myoglobin and the fossil record: A phylogenetic synthesis, Nature (London) 246: 389–395.

    Article  CAS  Google Scholar 

  • Rubin, C. M., Houck, C. M., Deininger, P. L., Friedman, T., and Schmid, C. W., 1980, Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences, Nature (London) 284: 372–374.

    Article  CAS  Google Scholar 

  • Seif, I., Khoury, G., and Dhar, R., 1979, BKV splice sequences based on analysis of preferred donor and acceptor sites, Nucleic Acids Res. 6: 3387–3398.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, E. R., and MacDonald, P. C., 1981, Endocrinology of pregnancy, in: Textbook of Endocrinology ( R. H. Williams, ed.), pp. 412–422, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Takahara, J., Arimura, A., and Schally, A. V., 1974, Suppression of prolactin release by a purified porcine PIF preparation and catecholamines infused into a rat hypophysial portal vessel, Endocrinology 95: 462–465.

    Article  PubMed  CAS  Google Scholar 

  • Tashjian, A. H., Yasumura, Y., Levine, L., Sato, G. H., and Parker, M. L., 1968, Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone, Endocrinology 82: 342–352.

    Article  PubMed  CAS  Google Scholar 

  • Tashjian, A. H., Bancroft, F. C., and Levine, L., 1970, Production of both prolactin and growth hormone by clonal strains of rat pituitary cells: Differential effects of hydrocortisone and tissue extracts, J. Cell Biol. 47: 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, W. L., Collier, K. J., Weith, H. L., and Dixon, J. E., 1981, The use of aheptadeoxyribonucleotide as a specific primer for prolactin mRNA: A prediction of ambiguous RNA splicing, Biochem. Biophys. Res. Commun. 102: 1071–1077.

    Article  PubMed  CAS  Google Scholar 

  • Tushinski, R. J., Sussman, P. M., Yu, L. -Y., and Bancroft, F. C., 1977, Pregrowth hormone messenger RNA: Glucocorticoid induction and identification in rat pituitary cells, Proc. Natl. Acad. Sci. U.S.A. 74: 2357–2361.

    Article  PubMed  CAS  Google Scholar 

  • Wahli, W., David, I. B., Wyler, T., Weber, R., and Ryffel, G. U., 1980, Comparative analysis of the structural organization of two closely related vitellogenin genes in X. laevis, Cell 20: 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Yasumura, Y., Tashjian, A. H., and Sato, G. H., 1966. Establishment of four functional, clonal strains of animal cells in culture, Science 154: 1186–1189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Cooke, N.E. (1984). Mechanisms for Evolutionary Divergence within the Prolactin Gene Family. In: Kumar, A. (eds) Eukaryotic Gene Expression. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7459-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7459-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7461-9

  • Online ISBN: 978-1-4684-7459-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics