Mechanisms for Evolutionary Divergence within the Prolactin Gene Family

  • Nancy E. Cooke
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Transcriptional control of the expression of eukaryotic genes encoding proteins appears to be regulated both by DNA structures far removed from the gene (Klar et al., 1981; Nasmyth et al., 1981) and by signals found immediately upstream from the start of transcription (Breathnach and Chambon, 1981). The differential expression of members within a family of genes could therefore be dependent on structural differences adjacent to those genes. The exact location and nature of several of these adjacent regulatory regions have been examined in detail. The TATAA homology that occurs 20–30 base pairs (bp) 5′ to the start of transcription appears to specify the nucleotide at which RNA synthesis begins (Corden et al., 1980). A second set of sequences that are necessary for transcriptional efficiency is located upstream from the TATAA homology. The exact site of these modulating regions has recently been determined for the thymidine kinase gene of herpes simplex virus (McKnight and Kingsbury, 1982). In this gene, mutations in a guanine-rich segment between bases −7 and −61 and a cytosine-rich segment between bases −80 and −105 markedly decrease the efficiency of transcription. Although the −61 to −80 region of this gene contains the “CAAT” homology (Benoist et al., 1980; Efstratiadis et al., 1980; Liebhaber et al., 1980) found in a wide variety of genes, it does not appear to affect the level of thymidine kinase gene transcription. Steroid hormones induce transcription in a number of genes. DNA sequences necessary for this induction have been shown to be linked to the 5′ flanking region of such glucocorticoid-induced genes (Hynes et al., 1981; Lee et al., 1981; Robins et al., 1982). Further information on specific regulatory structures within other protein-coding genes may be obtained by comparison of the structure of genes within a family that are expressed differentially in response to different signals.


Growth Hormone Direct Repeat Herpes Simplex Virus Thymidine Kinase Thymidine Kinase Gene Simplex Virus Thymidine Kinase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barta, A., Richards, R. I., Baxter, J. D., and Shine, J., 1981, Primary structure and evolution of rat growth hormone gene, Proc. Natl. Acad. Sci. U.S.A. 78: 4867–4871.PubMedCrossRefGoogle Scholar
  2. Bell, G. I., Pictet, R., and Rutter, W. J., 1980, Analysis of the region flanking the insulin gene and sequence of an Alu family member, Nucleic Acids Res. 8: 4091–4109.PubMedCrossRefGoogle Scholar
  3. Ben-Jonathan, N., Oliver, C., Weiner, H. J., Mical, R. S., and Porter, J. C., 1977, Dopamine in hypophysial portal plasma of the rat during the estrous cycle and throughout pregnancy, Endocrinology 100: 452–458.PubMedCrossRefGoogle Scholar
  4. Benoist, C., O’Hare, K., Breathnach, R., and Chambon, P., 1980, The ovalbumin gene-sequence of putative control regions, Nucleic Acids Res. 8: 127–142.PubMedCrossRefGoogle Scholar
  5. Breathnach, R., and Chambon, P., 1981, Organization and expression of eukaryotic split genes encoding for proteins, Annu. Rev. Biochem. 50: 349–383.PubMedCrossRefGoogle Scholar
  6. Breathnach, R., Benoist, C., O’Hare, K., Gannon, F., and Chambon, P., 1978, Ovalbumin gene: Evidence for a leader sequence in mRNA and DNA sequences at the exon—intron boundaries, Proc. Natl. Acad. Sci. U.S.A. 75: 4853–4857.PubMedCrossRefGoogle Scholar
  7. Calabretto, B., Robberson, D. L., Barrera-Saldana, H. A., Lambrou, T. P., and Saunders, G. F., 1982, Genome instability in a region of human DNA enriched in Alu repeat sequences, Nature (London) 296: 219–225.CrossRefGoogle Scholar
  8. Calos, M. P., and Miller, J. H., 1980, Transposable elements, Cell 20: 579–595.PubMedCrossRefGoogle Scholar
  9. Cochet, M., Gannon, F., Hen, R., Maroteaux, L., Perrin, F., and Chambon, P., 1979, Organization and sequence studies of the 17-piece chicken conalbumin gene, Nature (London) 282: 567–574.CrossRefGoogle Scholar
  10. Cooke, N. E., and Baxter, J. D., 1982, Structural analysis of the prolactin gene suggests a separate origin for its 5’ end, Nature (London) 297: 603–606.CrossRefGoogle Scholar
  11. Cooke, N. E., Coit, D., Weiner, R. I., Baxter, J. D., and Martial, J. A., 1980, Structure of cloned DNA complementary to rat prolactin messenger RNA, J. Biol. Chem. 255: 6502–6510.PubMedGoogle Scholar
  12. Cooke, N. E., Coit, D., Shine, J., Baxter, J. D., and Martial, J. A., 1981, Human prolactin: cDNA structural analysis and evolutionary comparisons, J. Biol. Chem. 256: 4007–4016.PubMedGoogle Scholar
  13. Corden, J., Wasylyk, A., Buchwalder, P., Sassone-Corsi, D., Kedinger, P., and Chambon, P., 1980, Promoter sequences of eukaryotic protein-coding genes, Science 209: 1406–1414.PubMedCrossRefGoogle Scholar
  14. Daughaday, W. H., 1981, The adenohypophysis, in: Textbook of Endocrinology ( R. H. Williams, ed.), pp. 73–116, W. B. Saunders, Philadelphia.Google Scholar
  15. DeNoto, F. M., Moore, D. D., and Goodman, H. M., 1981, Human growth hormone DNA sequence and mRNA structure: Possible altemative splicing, Nucleic Acids Res. 9: 3719–3730.PubMedCrossRefGoogle Scholar
  16. Efstratiadis, A., Posakony, J. W., Maniatis, T., Lawn, R. M., O’Connell, C., Spritz, R. A., DeRiel, J. K., Forget, B. G., Weissman, S. M., Slightom, J. L., Blechl, A. E., Smithies, O., Baralle, F. E., Shoulders, C. C., and Proudfoot, N. J., 1980, The structure and evolution of the human ß-globin gene family, Cell 21: 653–668.PubMedCrossRefGoogle Scholar
  17. Frohman, L. A., Maran, J. W., and Dhariwal, P. S., 1971, Plasma growth hormone responses to intrapituitary injections of growth hormone releasing factor (GRF) in the rat, Endocrinology 88: 1483–1488.PubMedCrossRefGoogle Scholar
  18. Gubbins, E. J., Maurer, R. A., Lagrimini, M., Erwin, C. R., and Donelson, J. E., 1980, Structure of the rat prolactin gene, J. Biol. Chem. 255: 8655–8662.PubMedGoogle Scholar
  19. Hynes, N. E., Kennedy, N., Rahmsdorf, U., and Groner, B., 1981, Hormone-responsive expression of an endogenous proviral gene of mouse mammary tumor virus after molecular cloning and gene transfer into cultured cells, Proc. Natl. Acad. Sci. U.S.A. 78: 2038–2042.PubMedCrossRefGoogle Scholar
  20. Jelinek, W. R., and Schmid, C. W., 1982, Repetitive sequences in eukaryotic DNA and their expression, Annu. Rev. Biochem. 51: 813–844.PubMedCrossRefGoogle Scholar
  21. Klar, A. J. S., Strathern, J. N., Broach, J. R., and Hicks, J. B., 1981, Regulation of transcription in expressed and unexpressed mating type cassettes of yeast, Nature (London) 289: 239–244.CrossRefGoogle Scholar
  22. Krulich, L., Dhariwhal, A. P. S., and McCann, S. M., 1968, Stimulatory and inhibitory effects of purified hypothalamic extracts on growth hormone release from rat pituitary in vitro, Endocrinology 83: 783–790.PubMedCrossRefGoogle Scholar
  23. Lee, F., Mulligan, R., Berg, P., and Ringold, G., 1981, Glucocorticoids regulate expression of dihydrofolate reductase cDNA in mouse mammary tumour virus chimaeric plasmids, Nature (London) 294: 228–233.CrossRefGoogle Scholar
  24. Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L., and Steitz, J. A., 1980, Are snRNPs involved in splicing?, Nature (London) 283: 220–224.CrossRefGoogle Scholar
  25. Liebhaber, S. A., Goosens, M. J., and Kan, Y. W., 1980, Cloning and complete nucleotide sequence of human 5’-a-globin gene, Proc. Natl. Acad. Sci. U.S.A. 77: 7054–7058.PubMedCrossRefGoogle Scholar
  26. Martial, J. A., Hallewell, R. A., Baxter, J. D., and Goodman, H. M., 1979, Human growth hormone: Complementary DNA cloning and expression in bacteria, Science 205: 602–607.PubMedCrossRefGoogle Scholar
  27. Martin, T. F. J., and Tashjian, A. H., 1977, Cell culture studies of thyrotropin-releasing hormone action, in: Biochemical Action of Hormones ( G. Litwack, ed.), pp. 269–312, Academic Press, New York.CrossRefGoogle Scholar
  28. Maurer, R. A., 1980, Dopaminergic inhibition of prolactin synthesis and prolactin messenger RNA accumulation in cultured pituitary cells, J. Biol. Chem. 255: 8092–8097.PubMedGoogle Scholar
  29. Maurer, R. A., Erwin, C. R., and Donelson, J. E., 1981, Analysis of 5’ flanking sequences and intron—exon boundaries of the rat prolactin gene, J. Biol. Chem. 256: 10524–10528.PubMedGoogle Scholar
  30. McKenna, M. G., 1969, The origin and early differentiation of therian mammals, Ann. N. Y. Acad. Sci. 167: 217–240.CrossRefGoogle Scholar
  31. McKnight, S. L., and Kingsbury, R., 1982, Transcriptional control signals of a eukaryotic protein-coding gene, Science 217: 316–324.PubMedCrossRefGoogle Scholar
  32. Moore, D. D., Conkling, M. A., and Goodman, H. M., 1982, Human growth hormone: A multi-gene family, Cell 29: 285–286.PubMedCrossRefGoogle Scholar
  33. Nasmyth, K. A., Tatchell, K., Hall, B. D., Astell, C., and Smith, M., 1981, A position effect in the control of transcription at yeast mating type loci, Nature (London) 289: 244–250.CrossRefGoogle Scholar
  34. Niall, H. D., Hogan, M. L., Sauer, R., Rosenbaum, I. Y., and Greenwood, F. C., 1971, Sequences of pituitary and placental lactogenic and growth hormones: Evolution from a primordial peptide by gene reduplication, Proc. Natl. Acad. Sci. U.S.A. 68: 866–869.PubMedCrossRefGoogle Scholar
  35. Nicoll, C. S., and Meites, J., 1964, Prolactin secretion in vitro: Effects of gonadal and adrenal cortical steroids, Proc. Soc. Exp. Biol. Med. 117: 579–581.PubMedGoogle Scholar
  36. Owerbach, D., Rutter, W. J., Martial, J. A., Baxter, J. D., and Shows, T. B., 1980, Genes for growth hormone, chorionic somatomammotropin, and growth hormone-like gene on chromosome 17 in humans, Science 207: 289–292.CrossRefGoogle Scholar
  37. Owerbach, D., Rutter, W. J., Cooke, N. E., Martial, J. A., and Shows, T. B., 1981, The prolactin gene is located on chromosome 6 in humans, Science 212: 815–816.PubMedCrossRefGoogle Scholar
  38. Page, G. S., Smith, S., and Goodman, H. M., 1981, DNA sequence of the rat growth hormone gene: Location of the 5’ terminus of the growth hormone mRNA and identification of an internal transposon-like element, Nucleic Acids Res. 9: 2087–2104.PubMedCrossRefGoogle Scholar
  39. Robins, D. M., Paek, I., Seeburg, P. H., and Axel, R., 1982, Regulated expression of human growth hormone genes in mouse cells, Cell 29: 623–631.PubMedCrossRefGoogle Scholar
  40. Rogers, J., and Wall, R., 1980, A mechanism for RNA splicing, Proc. Natl. Acad. Sci. U.S.A. 77: 1877–1879.PubMedCrossRefGoogle Scholar
  41. Romero-Herrera, A. E., Lehman, H., Joysey, K. A., and Friday, A. E., 1973, Molecular evolution of myoglobin and the fossil record: A phylogenetic synthesis, Nature (London) 246: 389–395.CrossRefGoogle Scholar
  42. Rubin, C. M., Houck, C. M., Deininger, P. L., Friedman, T., and Schmid, C. W., 1980, Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences, Nature (London) 284: 372–374.CrossRefGoogle Scholar
  43. Seif, I., Khoury, G., and Dhar, R., 1979, BKV splice sequences based on analysis of preferred donor and acceptor sites, Nucleic Acids Res. 6: 3387–3398.PubMedCrossRefGoogle Scholar
  44. Simpson, E. R., and MacDonald, P. C., 1981, Endocrinology of pregnancy, in: Textbook of Endocrinology ( R. H. Williams, ed.), pp. 412–422, W. B. Saunders, Philadelphia.Google Scholar
  45. Takahara, J., Arimura, A., and Schally, A. V., 1974, Suppression of prolactin release by a purified porcine PIF preparation and catecholamines infused into a rat hypophysial portal vessel, Endocrinology 95: 462–465.PubMedCrossRefGoogle Scholar
  46. Tashjian, A. H., Yasumura, Y., Levine, L., Sato, G. H., and Parker, M. L., 1968, Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone, Endocrinology 82: 342–352.PubMedCrossRefGoogle Scholar
  47. Tashjian, A. H., Bancroft, F. C., and Levine, L., 1970, Production of both prolactin and growth hormone by clonal strains of rat pituitary cells: Differential effects of hydrocortisone and tissue extracts, J. Cell Biol. 47: 61–70.PubMedCrossRefGoogle Scholar
  48. Taylor, W. L., Collier, K. J., Weith, H. L., and Dixon, J. E., 1981, The use of aheptadeoxyribonucleotide as a specific primer for prolactin mRNA: A prediction of ambiguous RNA splicing, Biochem. Biophys. Res. Commun. 102: 1071–1077.PubMedCrossRefGoogle Scholar
  49. Tushinski, R. J., Sussman, P. M., Yu, L. -Y., and Bancroft, F. C., 1977, Pregrowth hormone messenger RNA: Glucocorticoid induction and identification in rat pituitary cells, Proc. Natl. Acad. Sci. U.S.A. 74: 2357–2361.PubMedCrossRefGoogle Scholar
  50. Wahli, W., David, I. B., Wyler, T., Weber, R., and Ryffel, G. U., 1980, Comparative analysis of the structural organization of two closely related vitellogenin genes in X. laevis, Cell 20: 107–117.PubMedCrossRefGoogle Scholar
  51. Yasumura, Y., Tashjian, A. H., and Sato, G. H., 1966. Establishment of four functional, clonal strains of animal cells in culture, Science 154: 1186–1189.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Nancy E. Cooke
    • 1
  1. 1.Endocrine Section, Department of Medicine, and Department of Human GeneticsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations