Pattern of Histone-Variant Synthesis and Implications for Gene Regulation

  • Roy S. Wu
  • William M. Bonner
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Studies on histone proteins impinge in two different ways on the study of transcription: (1) the role of histone proteins in the structure and function of chromatin and (2) the regulation of histone gene expression. It is generally accepted that histones serve a structural role in the packaging of the DNA in the cell nucleus (Felsenfeld, 1978). Thus, histones may affect gene expression by changing the structure of chromatin. However, the many complex and multiple posttranslational modifications of histones suggest that they have other roles in addition to purely structural ones.


Chinese Hamster Ovary Cell Core Histone Histone Protein Histone Gene Histone Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson, R. P., and Blobel, G., 1975, Isolation of nuclear pore complexes in association with a lamina, Proc. Natl. Acad. Sci. U.S.A. 72: 1007–1111.PubMedCrossRefGoogle Scholar
  2. Abercrombie, M., and Ambrose, E. J., 1962, The surface properties of cancer cells: A review, Cancer Res. 22: 525–548.PubMedGoogle Scholar
  3. Adolph, K. W., Cheng, S. M., and Laemmli, U. K., 1977, Role of nonhistone proteins in metaphase chromosome structure, Cell 12: 805–816.PubMedCrossRefGoogle Scholar
  4. Alfageme, C. R., Zweidler, A., Mahowald, A., and Cohen, L. H., 1974, Histones of Drosophila embryos, J. Biol. Chem. 249: 3729–3736.PubMedGoogle Scholar
  5. Allis, C. D., Glover, C. V. C., Bowen, J. K., and Gorovsky, M. A., 1980, Histone variants specific to the transcriptionally active, amitotically dividing macronucleus of the unicellular eucaryote, Tetrahymena thermophila, Cell 20: 609–617.PubMedCrossRefGoogle Scholar
  6. Appels, R., and Peacock, W. J., 1978, The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference to Drosophila, Int. Rev. Cytol. 8: 69–126 (Suppl.).Google Scholar
  7. Ball, D. J., Slaughter, C. A., Hensley, P., and Garrard, W. T., 1983, Amino acid sequence of N-terminal domain of calf thymus histone H2A.Z, FEBS Leu. 154: 166–170.CrossRefGoogle Scholar
  8. Berezney, R., and Coffey, D. S., 1974, Identification of a nuclear protein matrix, Biochem. Biophys. Res. Commun. 60: 1410–1417.PubMedCrossRefGoogle Scholar
  9. Blankstein, L. A., and Levy, S. B., 1976, Changes in histone f2a2 associated with proliferation of Friend leukaemic cells, Nature (London) 260: 638–640.CrossRefGoogle Scholar
  10. Bonner, W. M., West, M. H. P., and Stedman, J. D., 1980, Two-dimensional gel analysis of histones in acid extracts of nuclei, cells, and tissues, Eur. J. Biochem. 109: 17–23.PubMedCrossRefGoogle Scholar
  11. Borun, T. W., Ajiro, K., Zweidler, A., Dolby, T. W., and Stephens, R. E., 1977, Studies of human histone messenger RNA II: The resolution of fractions containing individual human histone messenger RNA species, J. Biol. Chem. 252: 173–180.PubMedGoogle Scholar
  12. Bradbury, E. M., Inglis, R. J., Matthews, H. R., and Saurer, N., 1973, Phosphorylation of very lysine-rich histones in Physarum polycephalum: Correlation with chromosome condensation, Eur. J. Biochem. 33: 131–139.PubMedCrossRefGoogle Scholar
  13. Britten, R. J., and Kohne, D. E., 1968, Repeated sequences in DNA, Science 161: 529–540.PubMedCrossRefGoogle Scholar
  14. Brutlag, D., 1980, Molecular arrangement and evolution of heterochromatic DNA, Annu. Rev. Genet. 14: 121–144.PubMedCrossRefGoogle Scholar
  15. Capco, D. G., Wan, K. M., and Penman, S., 1982, The nuclear matrix: Three-dimensional architecture and protein composition, Cell 29: 847–858.PubMedCrossRefGoogle Scholar
  16. Caron, F., and Thomas, J. O., 1981, Exchange of histone H1 between segments of chromatin, J. Mol. Biol. 146: 513–537.PubMedCrossRefGoogle Scholar
  17. Commerford, S. L., Carsten, A. L., and Cronkite, E. P., 1982, Histone turnover within non-proliferating cells, Proc. Natl. Acad. Sci. U.S.A. 79: 1163–1165.PubMedCrossRefGoogle Scholar
  18. D’Anna, J. A., Jr., and Isenberg, I., 1974, Conformational changes of histone LAK(f2a2), Biochemistry 13: 2098–2104.PubMedCrossRefGoogle Scholar
  19. D’Anna, J. A., Gurley, L. R., and Tobey, R. A., 1982, Syntheses and modulations in the chromatin contents of histones Hl° and H1 during GI and S phases in Chinese hamster cells, Biochemistry 21: 3991–4000.PubMedCrossRefGoogle Scholar
  20. Delegeane, A. M., and Lee, A. S., 1981, Coupling of histone and DNA synthesis in the somatic cell cycle, Science 215: 79–81.CrossRefGoogle Scholar
  21. Elgin, S. C. R., and Weintraub, H., 1975, Chromosomal proteins and chromatin structure, Annu. Rev. Biochem. 44: 725–774.PubMedCrossRefGoogle Scholar
  22. Engel, J. D., Sugarman, B. J., and Dodgson, J. B., 1982, A chicken histone H3 gene contains intervening sequences, Nature (London) 297: 434–436.CrossRefGoogle Scholar
  23. Faluner, K., Yarger, J., and Hereford, L., 1980, Yeast histone mRNA is polyadenylated, Nucleic Acids Res. 8: 5725–5737.CrossRefGoogle Scholar
  24. Felsenfeld, G., 1978, Chromatin, Nature (London) 271: 115–122.CrossRefGoogle Scholar
  25. Flint, S. J., and Weintraub, H. M., 1977, An altered subunit configuration associated with the actively transcribed DNA of integrated adenovirus genes, Cell 12: 783–794.PubMedCrossRefGoogle Scholar
  26. Franklin, S. G., and Zweidler, A., 1977, Non-allelic variants of histones 2a, 2b, and 3 in mammals, Nature (London) 266: 273–275.CrossRefGoogle Scholar
  27. Gabrielli, F., and Baglioni, C., 1975, Maternal messenger RNA and histone synthesis in embryos of the surf clam Spisula solidissima, Dey. Biol. 43: 254–263.CrossRefGoogle Scholar
  28. Grandy, D. K., Engel, J. D., and Dodgson, J. B., 1982, Complete nucleotide sequence of a chicken H2b histone gene, J. Biol. Chem. 257: 8577–8583.PubMedGoogle Scholar
  29. Groppi, V. E., Jr., and Coffino, P., 1980, G1 and S phase mammalian cells synthesize histones at equivalent rates, Cell 21: 195–204.PubMedCrossRefGoogle Scholar
  30. Grosschedl, R., and Birnstiel, M. L., 1980, Spacer DNA sequences upstream of the T-A-T-AA-A-T-A sequence are essential for promotion of H2A histone gene transcription. Proc. Natl. Acad. Sci. U.S.A. 77: 7102–7106.PubMedCrossRefGoogle Scholar
  31. Groudine, M., and Weintraub, H., 1981, Activation of globin genes during chicken development, Cell 24: 393–401.PubMedCrossRefGoogle Scholar
  32. Grunstein, M., and Grunstein, J., 1977, The histone H4 gene of Strongylocentrotus purpuratus: DNA and mRNA sequences at the 5’ end, Cold Spring Harbor Symp. Quant. Biol. 42: 1083–1092.CrossRefGoogle Scholar
  33. Grunstein, M., and Schedi, P., 1976, Isolation and sequence analysis of sea urchin (Lytechinus pictus) histone H4 messenger RNA, J. Mol. Biol. 104: 323–349.PubMedCrossRefGoogle Scholar
  34. Grunstein, M., Levy, S., Schedl, P., and Kedes, L. H., 1973, Messenger RNAs for individual histone proteins: Fingerprint analysis and in vitro translation, Cold Spring Harbor Symp. Quant. Biol. 38: 717–724.CrossRefGoogle Scholar
  35. Grunstein, M., Schedi, P., and Kedes, L. H., 1976, Sequence analysis and evolution of sea urchin (Lytechinus pictus and Strongylocentrotus purpuratus) histone H4 messenger RNAs, J. Mol. Biol. 104: 351–369.PubMedCrossRefGoogle Scholar
  36. Gurley, L. R., Walters, R. A., and Tobey, R. A., 1975, Sequential phosphorylation of histone subfractions in the Chinese hamster cell cycle, J. Biol. Chem. 250: 3936–3944.PubMedGoogle Scholar
  37. Gurley, L. R., Walters, R. A., Barham, S. S., and Deaven, L. L., 1978, Heterochromatin and histone phosphorylation, Exp. Cell Res. 111: 373–383.PubMedCrossRefGoogle Scholar
  38. Heintz, N., Zernik, M., and Roeder, R. G., 1981, The structure of the human histone genes: Clustered but not tandemly repeated, Cell 24: 661–668.PubMedCrossRefGoogle Scholar
  39. Hentchel, C., and Birnstiel, M. L., 1981, The organization and expression of histone gene families, Cell 25: 301–313.CrossRefGoogle Scholar
  40. Hnilica, L. S., 1964, The specificity of histones in chicken erythrocytes, Experientia 20:13–14. Holley, R. W., 1975, Control of growth of mammalian cells in cell culture, Nature (London) 258: 487–490.Google Scholar
  41. Holmes, D. S., Cohen, R. H., Kedes, L. H., and Davidson, N., 1977, Position of sea urchin (Strongylocentrotus purpuratus) histone genes relative to restriction endonuclease sites on the chimeric plasmids pSp2 and pSp17, Biochemistry 16: 1504–1512.PubMedCrossRefGoogle Scholar
  42. Igo-Kemenes, T., Horz, W., and Zachau, H., 1982, Chromatin, Annu. Rev. Biochem. 51:89–121. Isenberg, I., 1979, Histones, Annu. Rev. Biochem. 48: 159–191.Google Scholar
  43. Jelinek, W. R., and Schmid, C. W., 1982, Repetitive sequences in eucaryotic DNA and their expression, Annu. Rev. Biochem. 51: 813–844.PubMedCrossRefGoogle Scholar
  44. John, B., and Miklos, G. L. G., 1979, Functional aspects of satellite DNA and heterochromatin, Int. Rev. Cytol. 58: 1–114.PubMedCrossRefGoogle Scholar
  45. Kedes, L. H., 1979, Histone genes and histone messengers, Annu. Rev. Biochem. 48: 837–870.PubMedCrossRefGoogle Scholar
  46. Klotz, I. M., Damall, D. W., and Langerman, N. R., 1975, Quaternary structure of proteins, in: The Proteins, Vol. 1 ( H. Neurath and R. L. Hill eds.), Academic Press, New York, pp. 293–411.Google Scholar
  47. Labhart, P., Koller, T., and Wunderli, H., 1982, Involvement of higher order chromatin structures in metaphase chromosome organization, Cell 30: 115–121.PubMedCrossRefGoogle Scholar
  48. Lame, B., Sautiere, P., and Biserte, G., 1976, Primary structure and microheterogeneities of rat chloroleukemia histone H2A (histone HLK, Ilbl, or F2a2), Biochemistry 15: 1640–1645.CrossRefGoogle Scholar
  49. Lasters, I., Muyldermans, S., Wyns, L. and Hamers, R., 1981, Differences in rearrangement of HI and H5 in chicken erythrocyte chromatin, Biochemistry 20: 1104–1110.PubMedCrossRefGoogle Scholar
  50. Lennox, R. W., Oshima, R. G., and Cohen, L. H., 1982, The H1 histones and their interphase phosphorylated states in differentiated and undifferentiated cell lines derived from murine teratocarcinomas, J. Biol. Chem. 257: 5183–5189.PubMedGoogle Scholar
  51. Levenson, R., and Marcu, K., 1976, On the existence of polyadenylated histone mRNA in Xenopus laevis oocytes, Cell 9: 311–322.PubMedCrossRefGoogle Scholar
  52. Levy, S., Childs, G., and Kedes, L. H., 1978, Sea urchin nuclei use RNA polymerase II to transcribe discrete histone RNAs larger than messengers, Cell 15: 151–162.PubMedCrossRefGoogle Scholar
  53. Lichtler, A. C., Sierra, F., Clark, S., Wells, J. R. E., Stein, J. L., and Stein, G. S., 1982, Multiple H4 histone mRNAs of HeLa cells are encoded in different genes, Nature (London) 298: 195–198.CrossRefGoogle Scholar
  54. Lifton, R. P., Goldberg, M. L., Karp, R. W., and Hogness, D. S., 1977, The organization of histone genes in Drosophila melanogaster: Functional and evolutionary implications, Cold Spring Harbor Symp. Quant. Biol. 42: 1047–1051.CrossRefGoogle Scholar
  55. Marashi, F., Baumbach, L., Rickles, R., Sierra, F., Stein, J. L., and Stein, G. S., 1982, Histone proteins in HeLa S3 cells are synthesized in a cell cycle specific manner, Science 215: 683–685.PubMedCrossRefGoogle Scholar
  56. Mardian, J. K. W., and Isenberg, I., 1978, Yeast inner histones and the evolutionary conservation of histone—histone interactions, Biochemistry 17: 3825–3833.PubMedCrossRefGoogle Scholar
  57. Marzluff, W. F., Jr., Sanders, L. A., Miller, D. M., and McCarty, K. S., 1972, Two chemically and metabolically distinct forms of calf thymus histone F3, J. Biol. Chem. 247: 2026–2033.PubMedGoogle Scholar
  58. Matsui, S. I., Seon, B. K., and Sandberg, A. A., 1979, Disappearance of a structural chromatin protein A24 in mitosis: Implications for molecular basis of chromatin condensation, Proc. Natl. Acad. Sci. U.S.A. 76: 6386–6390.PubMedCrossRefGoogle Scholar
  59. Maxson, R., Mohun, T., and Kedes, L., 1983a, Expression of specific genes: Histone genes, in: Eucaryotic Genes: Their Structure, Activity and Regulations ( N. McLean, S. Gregory, and R. Flavell, eds.), Butterworth, London.Google Scholar
  60. Maxson, R., Mohun, T., Gormezano, G., Childs, G., and Kedes, L. H., 1983b, Distinct organization and patterns of expression of early and late histone gene sets in the sea urchin, Strongylocentrotus purpuratus, Nature 301: 120–125.PubMedCrossRefGoogle Scholar
  61. McGhee, J. D., and Felsenfeld, G., 1980, Nucleosome structure, Ann. Rev. Biochem. 49: 1115–1156.PubMedCrossRefGoogle Scholar
  62. Melli, M., Spinelli, G., and Arnold, E., 1977, Synthesis of histone messenger RNA of HeLa cells during the cell cycle, Cell 12: 167–174.PubMedCrossRefGoogle Scholar
  63. Neelin, J. M., Callahan, P. X., Lamb, D. C., and Murray, K., 1964, The histones of chicken erythrocyte nuclei, Can. J. Biochem. 42: 1743–1752.PubMedCrossRefGoogle Scholar
  64. Newrock, K. M., Alfageme, C. R., Nardi, R. V., and Cohen, L. H., 1978, Histone changes during chromatin remodeling in embryogenesis, Cold Spring Harbor Symp. Quant. Biol. 42: 421–431.PubMedCrossRefGoogle Scholar
  65. Omori, A., Igo-Kemenes, T., and Zachau, H. G., 1980, Different repeat lengths in rat satellite I DNA containing chromatin and bulk chromatin, Nucleic Acids Res. 8: 5363–5375.PubMedCrossRefGoogle Scholar
  66. Palmer, D., Snyder, L. A., and Blumenfeld, M., 1980, Drosophila nucleosomes contain an unusual histone like protein, Proc. Natl. Acad. Sci. U.S.A. 77: 2671–2675.PubMedCrossRefGoogle Scholar
  67. Pantazis, P., and Bonner, W. M., 1981, Quantitative determination of histone modification, J. Biol. Chem. 256: 4669–4675.PubMedGoogle Scholar
  68. Paulson, J. R., and Laemmli, U. K., 1977, The structure of histone depleted metaphase chromosomes, Cell 12: 817–828.PubMedCrossRefGoogle Scholar
  69. Pehrson, J. R., and Cole, R. D., 1982, Histone H1 subfractions and Hl° turnover at different rates in nondividing cells, Biochemistry 21: 456–460.PubMedCrossRefGoogle Scholar
  70. Ruderman, J. V., and Pardue, M. L., 1978, A portion of all major classes of histone messenger RNA in amphibian oocytes is polyadenylated, J. Biol. Chem. 253: 2018–2025.PubMedGoogle Scholar
  71. Rykowski, M., Wallis, J., Choe, J., and Grunstein, M., 1981, Histone 2B sub-types are dispensible during the yeast cell cycle, Cell 25: 477–487.PubMedCrossRefGoogle Scholar
  72. Sautiere, P., Wonters-Tyrou, D., Laine, B., and Biserte, G., 1975, Structures of histone H2A (histone ALK, Ilbl or F2a2), in: The Structure and Function of Chromatin: a Ciba Foundation Symposium, Vol. 28, Elsevier/North-Holland, Amsterdam, pp. 77–88.Google Scholar
  73. Schmid, C. W., and Jelinek, W. R., 1982, The Alu family of dispersed repetitive sequences, Science 216: 1065–1070.PubMedCrossRefGoogle Scholar
  74. Shutt, R., and Kedes, L. H., 1974, Synthesis of histone mRNA sequences in isolated nuclei of cleavage stage sea urchin embryos, Cell 3: 283–292.PubMedCrossRefGoogle Scholar
  75. Sierra, F., Lichtler, A., Marashi, F., Rickles, R., Van Dyke, T., Clark, S., Wells, J., Stein, G., and Stein, J., 1982, Organization of human histone genes, Proc. Natl. Acad. Sci. U.S.A. 79: 1795–1799.PubMedCrossRefGoogle Scholar
  76. Simpson, R. T., 1981, Modulation of nucleosome structure by histone subtypes in sea urchin embryos, Proc. Natl. Acad. Sci. U.S.A. 78: 6803–6807.PubMedCrossRefGoogle Scholar
  77. Simpson, R. T., Stein, A., Bitter, G. A., and Kunzler, P., 1980, Chromatin structure and function: A model for transcription of nucleosome associated DNA, in: Novel ADP-Ribosylation of Regulatory Enzymes and Proteins ( M. E. Smulson and T. Sugimura, eds.), Elsevier/North-Holland, New York, pp. 133–142.Google Scholar
  78. Sittman, D. B., Chiu, I. M., Pan, C. J., Cohn, R. H., Kedes, L., and Marzluff, W. F., 1981, Isolation of two clusters of mouse histone genes, Proc. Natl. Acad. Sci. U.S.A. 78: 4078–4082.PubMedCrossRefGoogle Scholar
  79. Sizemore, S. R., and Cole, R. D., 1981, Asynchronous appearance of newly synthesized histone H1 subfractions in HeLa chromatin, J. Biol. Chem. 90: 415–417.Google Scholar
  80. Smith, B. J., and Johns, E. W., 1980, Isolation and characterization of subfractions of nuclear protein H1°, FEBS Lett. 110: 25–29.PubMedCrossRefGoogle Scholar
  81. Spiker, S., and Isenberg, I., 1977a, Evolutionary conservation of histone—histone binding sites: Evidence from interkingdom complex formation, Cold Spring Harbor Symp. Quant. Biol. 42: 157–163.CrossRefGoogle Scholar
  82. Spiker, S., and Isenberg, I., 1977b, Cross-complexing pattern of plant histones, Biochemistry 16: 1819–1826.PubMedCrossRefGoogle Scholar
  83. Stalder, J., Groudine, M., Dodgson, J. B., Engel, J. D., and Weintraub, H., 1980, Hb switching in chickens, Cell 19: 973–980.PubMedCrossRefGoogle Scholar
  84. Stein, G. S., and Stein, J. L., 1980, Regulation of histone gene expression during the cell cycle and coupling of histone gene expression with read out of other genetic sequences, in: Cell Growth ( C. Nicolini, ed.), Plenum Press, New York, pp. 377–409.Google Scholar
  85. Stein, G. S., Stein, J. L., Park, W. D., Detke, S., Lichtler, A. C., Sheppard, E. A., Jansing, R. L., and Phillips, I. R., 1978, Regulation of histone gene expression in HeLa S3 cells, Cold Spring Harbor Symp. Quant. Biol. 42: 1107–1120.PubMedCrossRefGoogle Scholar
  86. Storb, U., Wilson, R., Selsing, E., and Walfield, A., 1981, Rearranged and germline immunoglobulin K genes: Different states of DNase I sensitivity of constant K genes in immune competent and non-immune cells, Biochemistry 20: 990–996.PubMedCrossRefGoogle Scholar
  87. Surrey, S., and Nemer, M., 1976, Methylated blocked 5’ terminal sequences of sea urchin embryo messenger RNA classes containing and lacking poly(A), Cell 9: 589–595.PubMedCrossRefGoogle Scholar
  88. Todaro, G. J., Lazar, G. K., and Green, H., 1965, The initiation of cell division in a contact-inhibited mammalian cell line, J. Cell Comp. Physiol. 66: 325–334.CrossRefGoogle Scholar
  89. Urban, M. K., Franklin, S. G., and Zweidler, A., 1979, Isolation and characterization of the histone variants in chicken erythrocytes, Biochemistry 18: 3952–3960.PubMedCrossRefGoogle Scholar
  90. Von Holt, C., Strickland, W. N., Brandt, W. F., and Strickland, M. S., 1979, More histone structures, FEBS Lett. 100: 201–218.CrossRefGoogle Scholar
  91. Weintraub, H., and Groudine, M., 1976, Chromosomal subunits in active genes have an altered composition, Science 193: 848–856.PubMedCrossRefGoogle Scholar
  92. Weintraub, H., Larsen, A., and Groudine, M., 1981, a Globin gene switching during the development of chicken embryos: Expression and chromosome structure, Cell 24: 333–344.Google Scholar
  93. Weisbrod, S. T., 1982, Properties of active nucleosomes as revealed by HMG 14 and 17 chromatography, Nucleic Acids Res. 10: 2017–2041.PubMedCrossRefGoogle Scholar
  94. Weisbrod, S. T., and Weintraub, H., 1981, Isolation of actively transcribed nucleosomes using immobilized HMG 14 and 17 and an analysis of a globin chromatin, Cell 23: 391–400.PubMedCrossRefGoogle Scholar
  95. West, M. H. P., and Bonner, W. M., 1980a, Histone 2A, a heteromorphous family of eight protein species, Biochemistry 19: 3238–3245.PubMedCrossRefGoogle Scholar
  96. West, M. H. P., and Bonner, W. M., 1980b, Histone 2B can be modified by the attachment of ubiquitin, Nucleic Acids Res. 8: 4671–4680.PubMedCrossRefGoogle Scholar
  97. West, M. H. P., and Bonner, W. M., 1983, Comparison of tryptic peptides of H2A variants from mouse on peptide gels, Comp. Biochem. Physiol.Google Scholar
  98. Wu, C., Bingham, P. M., Livak, K. J., Holmgren, R., and Elgin, S. C. R., 1979a, The chromatin structure of specific genes. I. Evidence for higher order domains of defined DNA sequence, Cell 16: 797–806.PubMedCrossRefGoogle Scholar
  99. Wu, C., Wong, Y. C., and Elgin, S. C. R., 1979b, The chromatin structure of specific genes. II. Disruption of chromatin during gene activity, Cell 16: 807–814.PubMedCrossRefGoogle Scholar
  100. Wu, M., Holmes, D. S., Davidson, N., Cohn, R. H., and Kedes, L. H., 1976, The relative positions of sea urchin histone genes on the chimeric plasmids pSp2 and pSp17 as studied by electron microscopy, Cell 9: 163–169.PubMedCrossRefGoogle Scholar
  101. Wu, R. S., and Bonner, W. M., 1981, Separation of basal histone synthesis from S-phase histone synthesis in dividing cells, Cell 27: 321–330.PubMedCrossRefGoogle Scholar
  102. Wu, R. S., Kohn, K. W., and Bonner, W. M., 1981, Metabolism of ubiquitinated histones, J. Biol. Chem. 256: 5916–5920.PubMedGoogle Scholar
  103. Wu, R. S., Nishioka, D., and Bonner, W. M., 1982a, Differential conservation of histone 2A variants between mammals and sea urchins, J. Cell Biol. 93: 426–431.PubMedCrossRefGoogle Scholar
  104. Wu, R. S., Tsai, S., and Bonner, W. M., 1982b, Patterns of histone variant synthesis can distinguish Go from GI cells, Cell 31: 367–374.PubMedCrossRefGoogle Scholar
  105. Wu, R. S., Tsai, S., and Bonner, W. M., 1983a, Changes in histone H3 composition and synthesis pattern during lymphocyte activation, Biochemistry 22: 3868–3873.PubMedCrossRefGoogle Scholar
  106. Wu, R. S., Perry, L. J., and Bonner, W. M., 1983b, Fate of newly synthesized histones in GI and Go cells, FEBS Lett.Google Scholar
  107. Zhang, X. Y., and Horz, W., 1982, Analysis of highly purified satellite DNA containing chromatin from the mouse, Nucleic Acids Res. 10: 1481–1494.PubMedCrossRefGoogle Scholar
  108. Zweidler, A., 1976, Complexity and variability of the histone complement, Life Sci. Res. Rep. 4: 187–196.Google Scholar
  109. Zweidler, A., 1980, Nonallelic histones in development and differentiation, in: Gene Families of Collagen and Other Proteins ( D. J. Prockop and P. C. Champe, eds.), ElsevierlNorthHolland, Amsterdam and New York, pp. 47–56.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Roy S. Wu
    • 1
    • 2
  • William M. Bonner
    • 2
  1. 1.Biotech Research Laboratories, Inc.RockvilleUSA
  2. 2.Laboratory of Molecular Pharmacology, Division of Cancer TreatmentNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations