Some Observations on DNA Structure and Chromatin Organization at Specific Loci in Drosophila melanogaster

  • Michael A. Keene
  • Iain L. Cartwright
  • Gerhard Fleischmann
  • Ky Lowenhaupt
  • Elizabeth Steiner
  • Sarah C. R. Elgin
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Within the eukaryotic nucleus, the DNA is packaged in a complex fashion by association with histones and other chromosomal proteins. One may suggest a priori that differential protein packaging of coding sequences at the broad level of the chromomere, or in the specific vicinity of a gene, or both, might be an important determinant in the selective expression of these sequences. Our goals have been to map features of chromatin structure relative to known functional sequences, to establish the presence of alternative patterns of structure during development, and to look for alterations in structure that might occur as part of the process of gene induction and repression. To this end, we have recently conducted a series of studies utilizing several different DNA-cleavage reagents to examine the patterns of DNA-protein interaction at a number of Drosophila genes. Concurrent studies using immunofluorescent staining of polytene chromosomes have identified several presumptive structural nonhistone chromosomal proteins, including some the distribution pattern of which indicates a preferential association with loci that are to be expressed at some point in the development of the salivary gland cells of Drosophila. We anticipate that the synthesis of this information may ultimately lead to a better understanding of the process of gene activation and hence provide insights into the regulation of this event during development. For a more thorough review of many of the issues raised herein, see Cartwright et al. (1982).


Chromatin Structure Polytene Chromosome Globin Gene Hypersensitive Site Micrococcal Nuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, K., and Bauer, W. R., 1982, Preferential site-dependent cleavage by restriction endonuclease Pst I, Nucleic Acids Res. 10: 993–1007.PubMedCrossRefGoogle Scholar
  2. Ashburner, M., and Bonner, J. J., 1979, The induction of gene activity in Drosophila by heat shock, Cell 17: 241–254.PubMedCrossRefGoogle Scholar
  3. Bellard, M., Dretgen, G., Bellard, F., Oudet, P., and Chambon, P., 1982, Disruption of the typical chromatin structure in a 2500 base-pair region at the 5’ end of the actively transcribed ovalbumin gene, Eur. Mol. Biol. Assoc. J. 1: 223–230.Google Scholar
  4. Bloom, K. S., and Anderson, J. N., 1979, Conformation of ovalbumin and globin genes in chromatin during differential gene expression, J. Biol. Chem. 254: 10532–10539.PubMedGoogle Scholar
  5. Bloom, K. S., and Carbon, J., 1982, Yeast centromere DNA is a unique and highly ordered structure in chromosomes and small circular minichromosomes, Cell 29: 305–317.PubMedCrossRefGoogle Scholar
  6. Borchsenius, S., Bonven, B., Leer, J. C., and Westergaard, O., 1981, Nuclease-sensitive regions on the extrachromosomal r-chromatin from Tetrahymena pyriformis, Eur. J. Biochem. 117: 245–250.PubMedCrossRefGoogle Scholar
  7. Bryan, P. N., Hofstetter, H., and Birnstiel, M. L., 1981, Nucleosome arrangement on rRNA genes of Xenopus laevis, Cell 27: 459–466.PubMedCrossRefGoogle Scholar
  8. Cartwright, I. L., and Elgin, S. C. R., 1982, Analysis of chromatin structure and DNA sequence organization: Use of the 1,10-phenanthroline—cuprous complex, Nucleic Acids Res. 10: 5835–5853.PubMedCrossRefGoogle Scholar
  9. Cartwright, I. L., Keene, M. A., Howard, G. C., Abmayr, S. M., Fleischmann, G., Lowenhaupt, K., and Elgin, S. C. R., 1982, Chromatin structure and gene activity: The role of nonhistone chromosomal proteins, CRC Crit. Rev. Biochem. 13: 1–86.PubMedCrossRefGoogle Scholar
  10. Cartwright, I. L., Hertzberg, R. P., Dervan, P. B., and Elgin, S. C. R., 1983, Cleavage of chromatin with (methidiumpropyl-EDTA) iron (II) Proc. Natl. Acad. Sci. USA 80: 3213–3217.PubMedCrossRefGoogle Scholar
  11. Chao, M. V., Gralla, J., and Martinson, H. G., 1979, DNA sequence directs placement of histone cores on restriction fragments during nucleosome formation, Biochemistry 18: 1068–1074.PubMedCrossRefGoogle Scholar
  12. Chao, M. V., Gralla, J. D., and Martinson, H., 1980, lac operator nucleosomes. 1. Repressor binds specifically to operator within the nucleosome core, Biochemistry 19: 3254–3260.Google Scholar
  13. Dickerson, R. E., and Drew, H. R., 1981a, Kinematic model for B-DNA, Proc. Natl. Acad. Sci. U.S.A. 78: 7318–7322.PubMedCrossRefGoogle Scholar
  14. Dickerson, R. E., and Drew, H. R., 198 lb, Structure of a B-DNA dodecamer. II. Influence of base sequence on helix structure, J. Mol. Biol. 149: 761–786.Google Scholar
  15. Dunn, K., and Griffith, J. D., 1980, The presence of RNA in a double helix inhibits its interaction with histone protein, Nucleic Acids Res. 8: 555–572.PubMedCrossRefGoogle Scholar
  16. Elgin, S. C. R., 1981, Minireview: DNAase I-hypersensitive sites of chromatin, Cell 27: 413–415.PubMedCrossRefGoogle Scholar
  17. Elgin, S. C. R., Serunian, L. A., and Silver, L. M., 1978, Distribution patterns of Drosophila nonhistone chromosomal proteins, Cold Spring Harbor Symp. Quant. Biol. 42: 839–850.PubMedCrossRefGoogle Scholar
  18. Elgin, S. C. R., Cartwright, I. L., Fleischmann, G., Lowenhaupt, K., and Keene, M. A., 1983, Cleavage reagents as probes of DNA sequence organization and chromatin structure: Drosophila melanogaster locus 67B1, Cold Spring Harbor Symp. Quant. Biol. 47: 529–538.PubMedCrossRefGoogle Scholar
  19. Garel, A., Zolan, M., and Axel, R., 1977, Genes transcribed at diverse rates have a similar conformation in chromatin, Proc. Natl. Acad. Sci. U.S.A. 74: 4867–4871.PubMedCrossRefGoogle Scholar
  20. Hertzberg, R. P., and Dervan, P. B., 1982, Cleavage of double helical DNA by (methidiumpropyl-EDTA) iron (II), J. Am. Chem. Soc. 104: 313–315.CrossRefGoogle Scholar
  21. Hörz, W., and Altenberger, W., 1981, Sequence specific cleavage of DNA by micrococcal nuclease, Nucleic Acids Res. 9: 2643–2658.PubMedCrossRefGoogle Scholar
  22. Keene, M. A., and Elgin, S. C. R., 1981, Micrococcal nuclease as a probe of DNA sequence organization and chromatin structure, Cell 27: 57–64.PubMedCrossRefGoogle Scholar
  23. Keene, M. A., and Elgin, S. C. R., 1982, Perturbations of chromatin structure associated with gene expression, in: Heat Shock: From Bacteria to Man ( M. J. Schlesinger, M. Ashburner, and A. Tissieres, eds.), Cold Spring Harbor Laboratory, New York, pp. 83–90.Google Scholar
  24. Keene, M. A., and Elgin, S. C. R., 1984, Patterns of DNA structural polymorphism and their evolutionary implications (submitted).Google Scholar
  25. Keene, M. A., Corces, V., Lowenhaupt, K., and Elgin, S. C. R., 1981, DNase I hypersensitive sites in Drosophila chromatin occur at the 5 ends of regions of transcription, Proc. Nad. Acad. Sci. U.S.A. 78: 143–146.CrossRefGoogle Scholar
  26. Kunkel, G. R., and Martinson, H. G., 1981, Nucleosomes will not form on double-stranded RNA or over poly(dA) poly(dT) tracts in recombinant DNA, Nucleic Acids Res. 9: 6869–6888.PubMedCrossRefGoogle Scholar
  27. Kuo, M. T., Mandel, J. L., and Chambon, P., 1979, DNA methylation: Correlation with DNase I sensitivity of chicken ovalbumin and conalbumin chromatin, Nucleic Acids Res. 7: 2105–2114.PubMedCrossRefGoogle Scholar
  28. Larsen, A., and Weintraub, H., 1982, An altered DNA conformation detected by Si nuclease occurs at specific regionsin active chick globin chromatin, Cell 29: 609–622.PubMedCrossRefGoogle Scholar
  29. Lawson, G. M., Knoll, B. J., March, C. J., Woo, S. L. C., Tsai, J.-J., and O’Malley, B. W., 1982, Definition of 5’ and 3’ structural boundaries of the chromatin domain containing the ovalbumin multigene family, J. Biol. Chem. 257: 1501–1557.PubMedGoogle Scholar
  30. Lomonossoff, G. P., Butler, P. J. G., and Klug, A., 1981, Sequence-dependent variation in the conformation of DNA, J. Mol. Biol. 149: 745–760.PubMedCrossRefGoogle Scholar
  31. Lowenhaupt, K., Keene, M. A., Cartwright, I. L., and Elgin, S. C. R., 1983a, Chromatin structure of eukaryotic genes: DNase I hypersensitive sites, Stadler Genet. Symp. 14 (in press).Google Scholar
  32. Lowenhaupt, K., Cartwright, I. L., Keene, M. A., Zimmerman, J. L., and Elgin, S. C. R., 1983b, Chromatin structure in pre-and postblastula embryos of Drosophila, Dey. Biol. 99: 194–201.CrossRefGoogle Scholar
  33. Marshall, L. E., Graham, D. R., Reich, K. A., and Sigman, D. S., 1981, Cleavage of deoxyribonucleic acid by the 1,10-phenanthroline—cuprous complex: Hydrogen peroxide requirement and primary and secondary structure specificity, Biochemistry 20: 244–250.PubMedCrossRefGoogle Scholar
  34. Mayfield, J. E., Serunian, L. A., Silver, L. M., and Elgin, S. C. R., 1978, A protein released by DNase I digestion of Drosophila nuclei is preferentially associated with puffs, Cell 14: 539–544.PubMedCrossRefGoogle Scholar
  35. McGhee, J. D., Wood, W. I., Dolan, M., Engel, J. D., and Felsenfeld, G., 1981, A 200 base pair region at the 5’ end of the chicken adult 0-globin gene is accessible to nuclease digestion, Cell 27: 45–55.PubMedCrossRefGoogle Scholar
  36. Muskavitch, M., and Hogness, D. S., 1980, Molecular analysis of a gene in a developmentally regulated puff of Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A. 77: 7362–7366.PubMedCrossRefGoogle Scholar
  37. Muskavitch, M. A. T., and Hogness, D. S., 1982, An expandable gene that encodes a Drosophila glue protein is not expressed in variants lacking remote upstream sequences, Cell 29: 1041–1051.PubMedCrossRefGoogle Scholar
  38. Nasmyth, K. A., 1982, The regulation of yeast mating-type chromatin structure by SIR: An action at a distance affecting both transcription and transposition, Cell 30: 567–578.PubMedCrossRefGoogle Scholar
  39. Nedospasov, S. A., and Georgiev, G. P., 1980, Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease, Biochem. Biophys. Res. Commun. 92: 532–539.PubMedCrossRefGoogle Scholar
  40. Nickol, J., Behe, M., and Felsenfeld, G., 1982, Effect of the B—Z transition in poly(dG m5dC) poly(dG m5dC) on nucleosome formation, Proc. Natl. Acad. Sci. U.S.A. 79: 1771–1775.PubMedCrossRefGoogle Scholar
  41. Palen, T., Gottschling, D. S., and Cech, T., 1982, Transcribed and non-transcribed regions of the ribosomal RNA gene of Tetrahymena exhibit different chromatin structures, J. Cell Biochem. Suppl. 6: 336.Google Scholar
  42. Palmiter, R. D., Mulvihill, E. R., McKnight, G. S., and Senear, A. W., 1978, Regulation of gene expression in the chick oviduct by steroid hormones, Cold Spring Harbor Symp. Quant. Biol. 42: 639–648.PubMedCrossRefGoogle Scholar
  43. Peck, L. J., and Wang, J. C., 1981, Sequence dependence of the helical repeat of DNA in solution, Nature (London) 292: 375–378.CrossRefGoogle Scholar
  44. Que, B. G., Downey, K. M., and So, A. G., 1980, Degradation of deoxyribonucleic acid by a 1,10-phenanthroline-copper complex: The role of hydroxyl radicals, Biochemistry 19: 5987–5991.PubMedCrossRefGoogle Scholar
  45. Rhodes, D., and Klug, A., 1981, Sequence-dependent helical periodicity of DNA, Nature (London) 292: 378–380.CrossRefGoogle Scholar
  46. Samal, B., Worcel, A., Louis, C., and Schedi, P., 1981, Chromatin structure of the histone genes of D. melanogaster, Cell 23: 401–410.PubMedCrossRefGoogle Scholar
  47. Saragosti, S., Moyne, G., and Yaniv, M., 1980, Absence of nucleosomes in a fraction of SV40 chromatin between the origin of replication and the region coding for the late leader RNA, Cell 20: 65–75.PubMedCrossRefGoogle Scholar
  48. Selleck, S. B., Elgin, S. C. R., and Cartwright, I. L., 1984, Supercoil-dependent features of DNA structure at Drosophila locus 67B1 (submitted).Google Scholar
  49. Sheffery, M., Rifkind, R. A., and Marks, P. A., 1982, Murine erythroleukemia cell differentiation: DNase I hypersensitivity and DNA methylation near the globin genes, Proc. Natl. Acad. Sci. U.S.A. 79: 1180–1184.PubMedCrossRefGoogle Scholar
  50. Shermoen, A. W., and Beckendorf, S. K., 1982, A complex of interacting DNase I-hypersensitive sites near the Drosophila glue protein gene, Sgs 4, Cell 29: 601–607.PubMedCrossRefGoogle Scholar
  51. Silver, L. M., and Elgin, S. C. R., 1976, A method for determination of the in situ distribution of chromosomal proteins, Proc. Natl. Acad. Sci. U.S.A. 73: 423–427.PubMedCrossRefGoogle Scholar
  52. Silver, L. M., and Elgin, S. C. R., 1978, Immunological analysis of protein distributions in Drosophila polytene chromosomes, in: The Cell Nucleus V: Chromatin, Part B ( H. Busch, ed.), Academic Press, New York, pp. 216–263.Google Scholar
  53. Sirotkin, K., and Davidson, N., 1982, Developmentally regulated transcription from Drosophila melanogaster chromosomal site 67B, Dev. Biol. 89: 196–210.PubMedCrossRefGoogle Scholar
  54. Sledziewski, A., and Young, E. T., 1982, Chromatin conformational changes accompany transcriptional activation of a glucose-repressed gene in Saccharomyces cerevisae, Proc. Natl. Acad. Sci. U.S.A. 79: 253–256.PubMedCrossRefGoogle Scholar
  55. Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98: 503–517.PubMedCrossRefGoogle Scholar
  56. Stalder, J., Larsen, A., Engel, J. D., Dolan, M., Groudine, M., and Weintraub, H., 1980, Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNase I, Cell 20: 451–460.PubMedCrossRefGoogle Scholar
  57. VanDyke, M. W., Hertzberg, R. P., and Dervan, P. B., 1982, Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA • Fe(II), Proc. Natl. Acad. Sci. U.S.A. 79: 5470–5474.CrossRefGoogle Scholar
  58. Weintraub, H., and Groudine, M., 1976, Chromosomal subunits in active genes have an altered conformation, Science 193: 848–856.PubMedCrossRefGoogle Scholar
  59. Weintraub, H., Larsen, A., and Groudine, M., 1981, Globin-gene switching during the development of chicken embryos: Expression and chromosome structure, Cell 24: 333–344.PubMedCrossRefGoogle Scholar
  60. Weintraub, H., Berg, H., Groudine, M., and Graf, T., 1982, Temperature-sensitive changes in the structure of globin chromatin in lines of red cell precursors transformed by a ts-AEV virus, Cell, 28: 931–940.PubMedCrossRefGoogle Scholar
  61. Wong, Y.-C., O’Connell, P., Rosbash, M., and Elgin, S. C. R., 1981, DNase I hypersensitive sites of the chromatin for Drosophila melanogaster ribosomal protein 49 gene, Nucleic Acids Res. 9: 6749–6762.PubMedCrossRefGoogle Scholar
  62. Wu, C., 1980, The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I, Nature (London) 286: 854–860.CrossRefGoogle Scholar
  63. Wu, C., and Gilbert, W., 1981, Tissue-specific exposure of chromatin structure at the 5’ terminus of the rat preproinsulin II gene, Proc. Natl. Acad. Sci. U.S.A. 78: 1577–1580.PubMedCrossRefGoogle Scholar
  64. Wu, C., Bingham, P. M., Livak, K. J., Holmgren, R., and Elgin, S. C. R., 1979a, The chromatin structure of specific genes. I. Evidence for higher order domains of defined DNA sequence, Cell 16: 797–806.PubMedCrossRefGoogle Scholar
  65. Wu, C., Wong, Y.-C., and Elgin, S. C. R., 1979b, The chromatin structure of specific genes. II. Disruption of chromatin structure during gene activity, Cell 16: 807–814.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Michael A. Keene
    • 1
  • Iain L. Cartwright
    • 1
  • Gerhard Fleischmann
    • 1
  • Ky Lowenhaupt
    • 1
  • Elizabeth Steiner
    • 1
  • Sarah C. R. Elgin
    • 1
  1. 1.Department of BiologyWashington UniversitySt. LouisUSA

Personalised recommendations