Advertisement

Measurement of Applied Stress by X-Ray Diffraction

  • H. M. Otte
  • A. L. Esquivel
  • W. E. Lauer

Abstract

For the measurement of residual stresses, X-ray diffraction is potentially the best nondestructive method available. Experiments are described in which silicon bronze and α-brass samples were examined by X-rays while subjected to tensile deformation. The positions of the diffraction lines and their breadths were measured and analyzed. The special features of the experimental arrangement employed are presented and the method of analysis explained.

Keywords

Residual Stress Apply Stress Tensile Specimen Peak Shift Diffraction Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Thomson, “Engineering Interest in Internal Stresses,” in: Internal Stresses and Fatigue in Metals, edited by G. M. Rassweiler and W. L. Grube, Elsevier Publishing Co., Amsterdam, 1959, pp. 3 - 14.Google Scholar
  2. 2.
    C. S, Barrett, “Scientific Interest in Internal Stresses,” in: Internal Stresses and Fatigue in Metals, edited by G. M. Rassweiler and W. L. Grube, Elsevier Publishing Co., Amsterdam, 1959, pp. 15 – 40.Google Scholar
  3. 3.
    B. E. Warren and B. L. Averbach, J. Appl. Phys. 21: 595 (1950).CrossRefGoogle Scholar
  4. 4.
    M.S. Paterson, J. Appl. Phys. 23: 805 (1952).CrossRefGoogle Scholar
  5. 5.
    B. E. Warren and E. P. Warekois, Acta. Met. 3: 473 (1955).CrossRefGoogle Scholar
  6. 6.
    A. Fingerland, Czechoslov. J. Phys. 10B: 233 (1960).CrossRefGoogle Scholar
  7. 7.
    A. J. C. Wilson, Proc. Phys. Soc. 80: 286 (1960).CrossRefGoogle Scholar
  8. 8.
    A. J. C. Wilson, Proc. Phys. Soc. 81: 41 (1963).CrossRefGoogle Scholar
  9. 9.
    A. J. C. Wilson, Proc. Phys. Soc. 82: 986 (1963).CrossRefGoogle Scholar
  10. 10.
    B. E. Warren, Progr. in Metal Phys. 8:147 (1959).CrossRefGoogle Scholar
  11. 11.
    C.N. J. Wagner, Acta Met. 5: 427 (1957).CrossRefGoogle Scholar
  12. 12.
    C.N. J. Wagner, Acta Met. 5: 477 (1957).CrossRefGoogle Scholar
  13. 13.
    C. A. Johnson, Acta Cryst. 16: 490 (1963).CrossRefGoogle Scholar
  14. 14.
    B. E. Warren, J. Appl. Phys. 34: 1973 (1963).CrossRefGoogle Scholar
  15. 15.
    H. M. Otte and H. Chessin, (to be published).Google Scholar
  16. 16.
    J.B. Cohen and C. N. J. Wagner, J. Appl. Phys. 33: 2073 (1962).CrossRefGoogle Scholar
  17. 17.
    H. M. Otte, J. Appl. Phys. 32: 1536 (1961).CrossRefGoogle Scholar
  18. 18.
    A. Taylor and H. Sinclair, Proc. Phys. Soc. (London) 57: 108 (1945).CrossRefGoogle Scholar
  19. 19.
    J. B. Nelson and D. P. Riley, Proc. Phys. Soc. (London) 57: 160 (1945).CrossRefGoogle Scholar
  20. 20.
    H. M. Otte and D. O. Welch, Phil. Mag. 9: 299 (1964).CrossRefGoogle Scholar
  21. 21.
    C. N. J. Wagner, A.S. Tetelman, and H. M. Otte, J. Appl. Phys. 33: 3080 (1962).CrossRefGoogle Scholar
  22. 22.
    J. A. Rayne, Phys. Rev. 112: 1125 (1958).CrossRefGoogle Scholar
  23. 23.
    J.A. Rayne, Phys. Rev. 115: 63 (1959).CrossRefGoogle Scholar
  24. 24.
    R. P. I. Adler, Doctoral thesis, Yale University, 1964.Google Scholar

Copyright information

© Plenum Press 1965

Authors and Affiliations

  • H. M. Otte
    • 1
  • A. L. Esquivel
    • 1
  • W. E. Lauer
    • 2
  1. 1.Materials Research LaboratoryMartin CompanyOrlandoUSA
  2. 2.Martin-RIASBaltimoreUSA

Personalised recommendations