Defect Structure and Electrical Properties of Some Refractory Metal Oxides

  • N. M. Tallan
  • R. W. Vest
  • H. C. Graham


A brief description of the equilibrium thermodynamic approach to the characterization of defect concentrations in refractory metal oxides as a function of temperature, oxygen partial pressure, and impurity content is given. Techniques for the determination of ionic and electronic transport numbers by a blocking electrode polarization measurement and for the measurement of conductivity, thermoelectric power, and weight change are reviewed. The application of this approach and these measurements to the determination of the extent of deviation from stoichiometry, the nature and ionization state of the defects which predominate, and the mechanism of charge transport are illustrated by detailed consideration of several specific examples.


Defect Structure Oxygen Partial Pressure Oxygen Pressure Thermoelectric Power Defect Concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. A. Kroger and H. J. Vink, “Relations Between the Concentrations of Imperfections in Crystalline Solids,” in: Solid State Physics, Vol. III, edited by F. Seitz and D. Turnbull, 307–435, Academic Press, New York, 1956.Google Scholar
  2. 2.
    G. Brouwer, Philips Research Repts. 9: 366 (1954).Google Scholar
  3. 3.
    C. Wagner, Proc. Intern. Comm. Electrochem. Thermodynam. and Kinet.; 7th Meeting, 1955 (Butterworth Publications Ltd., London, 1957)Google Scholar
  4. 4.
    S. P. Mitoff, J. Chem. Phys. 36: 1383 (1962).CrossRefGoogle Scholar
  5. 5.
    H. Schmalzried, Z. Elektrochem. 66: 572 (1962).Google Scholar
  6. 6.
    M. H. Hebb, J. Chem. Phys. 20: 185 (1952).CrossRefGoogle Scholar
  7. 7.
    I. Yokota, J. Phys. Soc. Japan 16: 2213 (1961).CrossRefGoogle Scholar
  8. 8.
    W. E. Danforth and J. H. Bodine, J. Franklin Inst. 260: 467 (1955).CrossRefGoogle Scholar
  9. 9.
    P. H. Sutter and A.S. Nowick, J. Appl. Phys. 34: 734 (1963).CrossRefGoogle Scholar
  10. 10.
    V.A. Johnson and K. Lark-Horovitz, Phys. Rev. 92: 226 (1953).CrossRefGoogle Scholar
  11. 11.
    M. M. Chadda and A. P. B. Sinha, Indian J. Pure Appl. Phys. 1: 161 (1963).Google Scholar
  12. 12.
    K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104: 379 (1957).CrossRefGoogle Scholar
  13. 13.
    W. D. Kingery, J. Pappis, M. E. Doty, and D. C. Hill, J. Am. Ceram. Soc. 42: 393 (1959).CrossRefGoogle Scholar
  14. 14.
    B.C. Weber, J. Am. Ceram. Soc. 45: 614 (1962).CrossRefGoogle Scholar
  15. 15.
    J. Rudolph, Z. Naturforsch. 14a: 927 (1959).Google Scholar
  16. 16.
    P. Kofstad and D. J. Ruzicka, J. Electrochem. Soc. 110: 181 (1963).CrossRefGoogle Scholar
  17. 17.
    G. L. Sewell, Phys. Rev. 129: 597 (1963).CrossRefGoogle Scholar
  18. 18.
    S. P. Mitoff, J. Chem. Phys. 31: 1261 (1959).CrossRefGoogle Scholar
  19. 19.
    P.J. Harrop and R.H. Creamer, Brit. J. Appl. Phys. 14: 335 (1963).CrossRefGoogle Scholar
  20. 20.
    P.D. Southgate, Armour Research Foundation Report ARF A: 945 (1962).Google Scholar
  21. 21.
    M.O. Davies, J. Chem. Phys. 38: 2047 (1963).CrossRefGoogle Scholar
  22. 22.
    J. E. Wertz, J. W. Otron, and P. Auzins, J. Appl. Phys. 33: 322 (1962).CrossRefGoogle Scholar

Copyright information

© Plenum Press 1965

Authors and Affiliations

  • N. M. Tallan
    • 1
  • R. W. Vest
    • 2
  • H. C. Graham
    • 1
  1. 1.Aerospace Research LaboratoriesWright-Patterson Air Force BaseUSA
  2. 2.Systems Research Laboratories, Inc.DaytonUSA

Personalised recommendations