Advertisement

Grain Boundaries In Ceramic Materials

  • Thomas D. McGee

Abstract

This paper reviews the importance of grain boundaries in controlling the properties of a wide variety of ceramic materials. It includes results of original research in the effect of grain boundaries on the ductility of cubic ionic solids as a function of crystallographic orientation through the use of optical birefringence and transmission electron microscopic techniques.

Keywords

Ceramic Material Coercive Force Boundary Diffusion Barium Titanate Bulk Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Amelinckx and W. Dekeyser, “The Structure and Properties of Grain Boundaries,” in Solid State Physics, Advances in Research and Applications, Vol. 8, edited by F. Seitz and D. Turnbull ( Academic Press, London, 1959 ), pp. 325–499.Google Scholar
  2. 2.
    J. M. Burgers, “Geometrical Considerations Concerning the Structural Irregularities to Be Assumed in a Crystal,” Proc. Phys. Soc. (London) A52(1):23–33 (1040)CrossRefGoogle Scholar
  3. 3.
    W. L. Bragg, Discussion of reference 2, Proc, Phys. Soc. (London) A52 (1): 54–55 (1940).CrossRefGoogle Scholar
  4. 4.
    W. Shockley and W. T. Read, “Quantitative Predictions from Dislocation Models of Grain Boundaries,” Phys. Rev. 75 (4): 692 (1949).CrossRefGoogle Scholar
  5. 5.
    J.H. Van der Merwe, “On the Stresses Associated with Inter-Crystalline Boundaries,” Proc, Phys. Soc. (London) A63 (6): 616–637 (1950).CrossRefGoogle Scholar
  6. 6.
    W. T. Read, Jr., Dislocations in Crystals (McGraw-Hill Book Company, Inc., New York, 1953 ).Google Scholar
  7. 7.
    M. L. Kronberg, “Plastic Deformation of Single Crystals of Sapphire: Basal Slip and Twinning,” Acta Met. 5 (9): 507–524 (1957).CrossRefGoogle Scholar
  8. 8.
    J. Smit and H. P. Wign, Ferrites ( John Wiley and Sons, New York, 1959 ).Google Scholar
  9. 9.
    S. Amelinckx and P. Delavignette, “Dislocations in Layer Structures,” Chapt. 8. in Electron Microscopy and Strength of Crystals, edited by G. Thomas and J. Washburn, ( Interscience Publishers, New York, 1963 ), pp. 441–513.Google Scholar
  10. 10.
    A. W. Sleeswyk, “The Tilt Angle” (Letter to the Editor), Acta. Met. 11 (12): 1192–3 (1963).CrossRefGoogle Scholar
  11. 11.
    H. G. Van Buren, “Imperfections in Crystals,” 2nd edition ( North-Holland Publishing Company, Amsterdam, 1961 ).Google Scholar
  12. 12.
    Doris Kuhlmann-Wilsdorf, “Some Theoretical Considerations on the Geometry of Low-Angle Dislocation Boundaries,” J. Appl. Phys. 33 (2): 648–654 (1962).CrossRefGoogle Scholar
  13. 13.
    James C. M. Li, “The Interaction of Parallel Edge Dislocations with a Simple Tilt Dislocation Wall,” Acta Met. 8 (5): 296–311 (1960).CrossRefGoogle Scholar
  14. 14.
    W.T. Read and W. Shockley, “Dislocation Models of Grain Boundaries,” Phys. Rev. 78 (3): 275–289 (1950).CrossRefGoogle Scholar
  15. 15.
    D. McLean, “Grain Boundaries in Metals,” (Oxford University Press, London, 1957).Google Scholar
  16. 16.
    Sir G. T. Beilby, Aggregation and Flow of Solids ( Macmillan, London, 1921 ).Google Scholar
  17. 17.
    N. F. Mott, “Slip at Grain Boundaries and Grain Growth of Metals,” Proc. Phys. Soc. (London) 60 (4): 391–394 (1948).CrossRefGoogle Scholar
  18. 18.
    W. Shockley, “Dislocation Model of Grain Boundaries,” in L’état Solide (Report of 9th International Solvay Conference, Brussels, 1951 ).Google Scholar
  19. 19.
    B. Chalmers, “Structure of Crystal Boundaries,” Progr. in Metal Phys. 3:293–319, 1952.CrossRefGoogle Scholar
  20. 20.
    James C. M. Li, “High Angle Tilt Boundary-A Dislocation Core Model,” J. Appl. Phys. 32 (3): 525–541 (1961).CrossRefGoogle Scholar
  21. 21.
    T.S. Ke, “A Grain Boundary Model and the Mechanism of Viscous Intercrystalline Slip,” J. Appl. Phys. 20 (3): 274–280 (1949).CrossRefGoogle Scholar
  22. 22.
    J.H. Van der Merwe, “Crystal Interfaces. Part I. Semi-Infinite Crystals,’ J. Appl. Phys. 34 (1): 117–122 (1963).CrossRefGoogle Scholar
  23. 23.
    J. H. Van der Merwe, “Crystal Interfaces. Part II. Finite Overgrowths,’ J. Appl. Phys. 34 (1): 123–127 (1963).CrossRefGoogle Scholar
  24. 24.
    Paul G. Shewman, Diffusion in Solids ( McGraw-Hill Book Co., New York, 1963 ).Google Scholar
  25. 25.
    A. D. LeClaire, “The Analysis of Grain Boundary Diffusion Measurements,’ Brit. J. Appl. Phys. 14 (6): 351–356 (1963).CrossRefGoogle Scholar
  26. 26.
    R. T. P. Whipple, “Concentration Contours in Grain Boundary Diffusion,” Phil. Mag. 45 (371): 1225–1236 (1954).Google Scholar
  27. 27.
    J. C. Fisher, “Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion,” J. Appl. Phys. 22(1):74–77 (1951)Google Scholar
  28. 28.
    B. J. Wuensch and T. Vasilos, “Grain Boundary Diffusion in MgO,” J. Am. Ceram. Soc. 47: 63–68 (1963).CrossRefGoogle Scholar
  29. 29.
    J. F. Laurent and Jacques Bénard, “Determination de l’autodiffusion das le chlorure de sodium mono et polycrystalin” (“Determination of Self-Diffusion in Mono-and Polycrystalline Sodium Chloride”), Compt. Rend. 241 (8): 1204–1207 (1955).Google Scholar
  30. 30.
    J. F. Laurent and Jacques Bénard, “Autodiffusion des ions dans les halogenures alcalins polycrystallins” (“Self-Diffusion of Ions is Polycrystalline Alkali Halides”), Phys. and Chem. Solids 7 (2–3): 218–27 (1958).CrossRefGoogle Scholar
  31. 31.
    L. W. Barr, I. M. Hoodless, J.A. Morrison, and R. Rudham, “Effects of Gross Imperfections on Chloride-Ion Diffusion in Crystals of Sodium Chloride and Potassium Chloride,” Trans. Faraday Soc. 56 (449): 697–708 (1960).CrossRefGoogle Scholar
  32. 32.
    Paul G. Shewman, Diffusion in Solids ( McGraw-Hill Book Co., New York, 1963 ), p. 175.Google Scholar
  33. 33.
    G. Love and P. G. Shewman, “Self-Diffusivity of Silver in Twist Boundaries,” Acta Met. 11 (8): 899–906 (1963).CrossRefGoogle Scholar
  34. 34.
    A. L. Ruoff and R. W. Balluffi, “Strain-Enhanced Diffusion in Metals. II. Dislocation and Grain Boundary Short-Circuiting Models,” J. Appl. Phys. 34 (7): 1848–1853 (1963).CrossRefGoogle Scholar
  35. 35.
    W.D. Kingery, Introduction to Ceramics, ( John Wiley and Sons, New York, 1960 ).Google Scholar
  36. 36.
    H. Ichinose and G. C. Kuczynski, “Role of Grain Boundaries in Sintering,” Acta Met. 10 (3): 209–213 (1962).CrossRefGoogle Scholar
  37. 37.
    F. P. Knudsen, “Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size,” J. Am. Ceram. Soc. 42 (8): 376–387 (1959).CrossRefGoogle Scholar
  38. 38.
    D. Lynn Johnson and Ivan B. Cutler, “Diffusion Sintering: I. Initial Stage Sintering Models and Their Application to Shrinkage of Powder Compacts,” J. Am. Ceram. Soc. 46 (11): 541–545 (1963).CrossRefGoogle Scholar
  39. 39.
    D. Lynn Johnson and Ivan B. Cutler, “Diffusion Sintering: II. Initial Sintering Kinetics of Alumina,” J. Am. Ceram. Soc. 46 (11): 545–550 (1963).CrossRefGoogle Scholar
  40. 40.
    A. E. Paladino and R. L. Coble, “Effect of Grain Boundaries on Diffusion-Controlled Processes in Aluminum Oxide,” J. Am. Ceram. Soc. 46 (3): 133–136 (1963).CrossRefGoogle Scholar
  41. 41.
    A. N. Stroh, “The Formation of Cracks as a Result of Plastic Flow,” Proc. Royal Soc. (London) A223 (1154): 404–414 (1955).CrossRefGoogle Scholar
  42. 42.
    Jack Washburn, “Mechanism of Fracture,” Chapt. 6, in Mechanical Behavior of Materials at Elevated Temperatures, edited by John E. Dorn ( McGraw-Hill Book Co., New York, 1961 ), pp. 108–128.Google Scholar
  43. 43.
    Earl R. Parker, “Ductility of Magnesium Oxide,” in Mechanical Properties of Engineering Ceramics, edited by W. Wurth Kriegel and Hayne Palmour III, ( Inter-science Publishers, New York, 1961 ), pp. 65–87.Google Scholar
  44. 44.
    S. Feuerstein and E. R. Parker, “The Effect of Grain Boundaries on the Mechanical Properties of Ionic Crystals,” 5th Technical Report Issue No. 5, Series No. 150, Materials Research Laboratory, Institute of Engineering Research, University of California (Berkeley ), 1962.Google Scholar
  45. 45.
    Stanley A. Long and Thomas D. McGee, “Effect of Grain Boundaries on Plastic Deformation of Sodium Chloride,” J. Am. Ceram. Soc. 46 (12): 583–587 (1963).CrossRefGoogle Scholar
  46. 46.
    A.H. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford University Press, London, 1953 ).Google Scholar
  47. 47.
    R. J. Stokes and C. H. Li, “Dislocations and the Tensile Strength of Magnesium Oxide,” I. Am. Ceram. Soc. 46 (9): 423–434 (1963).CrossRefGoogle Scholar
  48. 48.
    R. C. Folweiler, “Creep Behavior of Pore-Free Polycrystalline Aluminum Oxide,” J. Appl. Phys. 32 (5): 773–778 (1961).CrossRefGoogle Scholar
  49. 49.
    R. L. Coble and Y. H. Guerard, “Creep of Polycrystalline Aluminum Oxide,” J. Am. Ceram. Soc. 46 (7): 353–354 (1963).CrossRefGoogle Scholar
  50. 50.
    George Economos, “Effect of Microstructure on the Electrical and Magnetic Properties of Ceramics,” Chapt. 21 in Ceramic Fabrication Processes, edited by M.D. Kingery ( John Wiley and Sons, New York, 1960 ), pp. 201–213.Google Scholar
  51. 51.
    W. J. Schuele and V. D. Deetscreek, “Fine Particle Ferrite,” in Ultrafine Particles, edited by W. E. Kuhn ( John Wiley and Sons, New York, 1963 ), pp. 218–235.Google Scholar
  52. 52.
    Fred E. Luborsky, ‘The Application of Ultrafine Particles to the Fabrication of Permanent Magnets,“ in Ultrafine Particles, edited W. E. Kuhn ( John Wiley and Sons, New York, 1963 ), pp. 488–513.Google Scholar
  53. 53.
    H.H. Stadelmaier and S. W. Derbyshire, “Relation between Electrical Properties and Microstructure of Barium Titanate,” in Materials Science Research, Vol. 1, edited by H. H. Stadelmaier and W. W. Austin ( Plenum Press, New York, 1963 ), pp. 57–65.Google Scholar
  54. 54.
    T.Y. Tien, “Grain Boundary Conductivity of Zro 81 Ca0.16 O1.,Ceramics,” J. Appl. Phys. 35 (1): 122–124 (1964).CrossRefGoogle Scholar
  55. 55.
    D. W. Lee and W. D. Kingery, “Radiation Energy Transfer and Thermal Conductivity of Ceramic Oxides,” J. Am. Ceram. Soc. 43 (11): 594–607 (1960).CrossRefGoogle Scholar
  56. 56.
    Eugene Ryshkewitch, Oxide Ceramics ( Academic Press. New York, 1960 ).Google Scholar
  57. 57.
    S. Amelinckx, “Dislocations in Ionic Crystals: I. Geometry of Dislocations” Chapt.. 2 in Mechanical Properties of Engineering Ceramics, edited by W. Wurth Kriegel and Hayne Palmour III, ( Interscience Publishers, New York, 1961 ), pp. 9–33.Google Scholar
  58. 58.
    J. E. Burke, “Grain Boundary Effects in Ceramics,” in Materials Science Research, Vol. 1, edited by H. H. Stadelmaier and W. W. Austin ( Plenum Press, New York, 1963 ), pp. 69–87.Google Scholar

Copyright information

© Plenum Press 1965

Authors and Affiliations

  • Thomas D. McGee
    • 1
  1. 1.Iowa State UniversityAmesUSA

Personalised recommendations