Advertisement

Vasopeptides pp 167-184 | Cite as

Studies on Kinin-Forming Enzymes in Human Plasma and their Heterogeneity

  • Hiroshi Moriya
  • Yoshio Hojima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 21)

Abstract

Kallikrein-kinin system has been suggested widely related to pathological conditions. Some of its related pathological significance were reviewed by Kallermeyer and Graham (1), and by Webster (2). Although the activation process of kallikreinogen in human plasma has not been well established, Webster and Ratnoff (3) suggested that Hageman factor (HF) was necessary to convert human kallikreinogen into activated kallikrein. It was also suggested that HF would activate plasminogen (4) and permeability factor/dilute (PF/dil) (5) in the early stage followed by the successive activation of kallikreinogen by these enzymes and, on the contrary, human plasma kallikrein converted human plasminogen to plasmin (6). On the other hand, Nagasawa et al. observed that HF directly activated bovine kallikreinogen to kallikrein (7). Some reasons for these confused observations may be partly due to the heterogeneity of plasma kininogenases (2, 8–11) and/or the substrate specificities of these enzymes (12, 13). The clear illustration on plasma kininogenases and of intrinsic kinin system in plasma were not obtained yet and remain to be discussed including the problems of species difference and activation methods.

Keywords

Human Plasma Activity Recovery Vasodilator Activity Acetone Powder Ammonium Sulfate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Kellermeyer and R. C. Graham, New Engl. J. Med., 279, 754, 802, 859 (1968).CrossRefGoogle Scholar
  2. 2.
    M. E. Webster, Fed. Proc., 27, 84 (1968).PubMedGoogle Scholar
  3. 3.
    M. E. Webster and O. D. Ratnoff, Nature, 192, 180 (1961).PubMedCrossRefGoogle Scholar
  4. 4.
    W. Vogt, J. Physiol., 170, 153 (1964).PubMedGoogle Scholar
  5. 5.
    B. Mason and A. A. Miles, Nature, 196, 587 (1962).CrossRefGoogle Scholar
  6. 6.
    R. W. Colman, Biochem. Biophys. Res. Commun., 35, 273 (1969).Google Scholar
  7. 7.
    S. Nagasawa, H. Takahashi, M. Koida, T. Suzuki and J. G. G. Schoenmakers, Biochem. Biophys. Res. Commun., 32, 644 (1968).CrossRefGoogle Scholar
  8. 8.
    Y. Hojima, H. Moriya and C. Moriwaki, Allergy (in Japanese), 19, 824 (1970).Google Scholar
  9. 9.
    R. W. Colman, L. Nattier and S. Sherry, J. Clin. Invest., 48, 11, 23 (1969).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Yano, S. Nagasawa and T. Suzuki, J. Biochem., 67, 713 (1970).PubMedGoogle Scholar
  11. 11.
    H. Z. Movat, H. B. Sender, M. P. Treloar and Y. Takeuchi, “Advances in Experimental Medicine and Biology,” Vol. 8, Ed. by F. Sicuteri, M. Rocha e Silva and N. Back, Plenum Press, New York-London, p. 123 (1970).Google Scholar
  12. 12.
    G. Seidel, Naunyn-Schmiedebergs Arch. Pharmakol., 264, 18 (1969).Google Scholar
  13. 13.
    R. Jahrreiss and E. Habermann, Naunyn-Schmiedebergs Arch. Pharmakol., 269, 85 (1971).Google Scholar
  14. 14.
    H. Moriya, K. Yamazaki and H. Fukushima, J. Biochem., 58, 315 (1965).PubMedGoogle Scholar
  15. 15.
    S. Jacobsen, Brit. J. Pharmacol., 26, 403 (1966).PubMedGoogle Scholar
  16. 16.
    E. Habermann and W. Klett, Biochem. Z., 346, 133 (1966).PubMedGoogle Scholar
  17. 17.
    H. Moriya, K. Yamazaki and H. Fukushima, J. Biochem., 58, 201 (1965).PubMedGoogle Scholar
  18. 18.
    B. C. W. Hummel, Can. J. Biochem. Physiol., 37, 1393 (1959ÿGoogle Scholar
  19. 19.
    G. W. Schwert and Y. Takenaka, Biochem. Biophys. Acta, 16, 570 (1955).CrossRefGoogle Scholar
  20. 20.
    T. Astrup and S. Mullertz, Arch. Biochem. Biophys., 40, 346 (1952).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Lassen, Acta Physiol. Scand., 27, 371 (1952).Google Scholar
  22. 22.
    H. Moriya, Y. Hojima, C. Moriwaki and T. Tajima, Experientia, 26, 720 (1970).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Hojima, H. Moriya and C. Moriwaki, J. Biochem., 69, 1019, 1027 (1971).PubMedGoogle Scholar
  24. 24.
    C. A. Ryan, Biochemistry, 5, 1952 (1966).CrossRefGoogle Scholar
  25. 25.
    Vesterberg and H. Svensson, Acta Chem. Scand., 20, 820 (1966).CrossRefGoogle Scholar
  26. 26.
    P. Andrews, Biochem. J., 96, 595 (1965).PubMedGoogle Scholar
  27. 27.
    B. J. Davis, Ann. N.Y. Acad. Sci., 121, 404 (1964).PubMedCrossRefGoogle Scholar
  28. 28.
    N. Back and R. Steger, Proc. Soc. Exptl. Biol. Med., 133, 740 (1970).Google Scholar
  29. 29.
    D. J. McConnell, L. J. Kagen and E. L. Becker, Proc. Soc. Exptl. Biol. Med., 119, 652 (1965).Google Scholar
  30. 30.
    E. Werle and I. Trautschold, Ann. N.Y. Acad. Sci., 104, 117 (1963).PubMedCrossRefGoogle Scholar
  31. 31.
    D. J. McConnell and B. Mason, Brit. J. Pharmacol., 38, 490 (1970).Google Scholar
  32. 32.
    E. L. Becker and L. Kagen, Ann. N.Y. Acad. Sci., 116, 866 (1964).PubMedCrossRefGoogle Scholar
  33. 33.
    V. H. Donaldson and 0.D. Ratnoff, Science, 150, 754 (1965).PubMedCrossRefGoogle Scholar
  34. 34.
    R. S. Speer, H. Ridgway and J. M. Hill, Thromb. Diath. Haemorrhag „ 14, 1 (1965).Google Scholar
  35. 35.
    A. P. Kaplan and K. F. Austen, J. Immun., 105, 802 (1970).PubMedGoogle Scholar
  36. 36.
    D. A. J. Armstrong and G. L. Milles, Biochem. Pharmacol., 13, 1393 (1964).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Hiroshi Moriya
    • 1
  • Yoshio Hojima
    • 1
  1. 1.The Laboratory of Physiological Chemistry, Faculty of Pharmaceutical SciencesScience University of TokyoTokyoJapan

Personalised recommendations