Kinetics and Transient Times of Fluorescence Optical Sensors (Optodes) for Blood Gas Analysis (O2, CO2, pH)

  • N. Opitz
  • D. W. Lubbers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 215)


Oxygen measurements with optical sensors (O2 optodes) (Lubbers and Opitz, 1983; Opitz and Lubbers, 1984) are based on fluorescence quenching of certain indicator molecules by molecular oxygen in a diffusion-controlled collisional process (Vaughan and Weber, 1970; Knopp and Longmuir, 1972). The functional dependence follows Stern-Volmer’s equation (Stern and Volmer, 1919) : S (P O2) = S0/ (1+KηPO2), where K is overall quenching constant, PO2, oxygen partial pressure, and S and So, relative fluorescence intensity in the presence and absence of oxygen, respectively. Since fluorescence optical sensors incorporate membrane-protected indicator layers, an exponential time course of the PO2 within these layers can be assumed (Jost, 1960), if a rectangular PO2 step, ΔP O2 = PO2″ − PO2′, is induced in front of the sensor membrane. Insertion of this time course into the hyperbolic calibration curve brings about asymmetrical kinetics of reversible reactions with different transient times, e.g. to 90% of final value (t90):
$$\begin{matrix}t_{90,02}^{\downarrow }={{k}^{-1}}\cdot \log \left( 10-\left( 9\cdot k\cdot \Delta P{{O}_{2}} \right)/\left( 1+k\cdot P{{O}_{2}}\prime\prime \right) \right) \\t_{90,02}^{\uparrow }={{k}^{-1}}\cdot \log \left( 10+\left( 9\cdot k\cdot \Delta P{{O}_{2}} \right)/\left( 1+k\cdot P{{O}_{2}}\prime\right) \right) \\\end{matrix}$$
where k−1 ~ D02/12, D02, oxygen diffusion coefficient and, 1, thickness of the sensor membrane.


Step Height Relative Fluorescence Intensity Transient Time Sensor Membrane Oxygen Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Jost, W. (1960). Diffusion in Solids, Liquids, Gases. Academic Press, New York-San Francisco-London.Google Scholar
  2. Knopp, J.A. and Longmuir, I.S. (1972). Intracellular measurement of oxygen by quenching of fluorescence of pyrenebutyric acid. Biochim. Biophys. Acta, 279, 393–397.CrossRefGoogle Scholar
  3. Lubbers, D.W. and Opitz, N. (1983). Blood gas analysis with fluorescence dyes as an example of their usefulness as quantitative chemical sensors. In: Proc. Int. Meet. Chemical Sensors, Kodansha Ltd, Tokyo; Elsevier, Amsterdam-Oxford-New York, pp.609–619.Google Scholar
  4. Opitz, N. and Lubbers, D.W. (1983). Compact CO2 gas analyser with favourable signal-to-noise ratio and resolution using special fluorencence sensors (optodes) illuminated by blue LED’s. In: Oxygen Transport to Tissue-VI. Eds Bruley, D., Bicher, H.I. and Reneau, D., Plenum Press, New York and London, (Adv. Exp. Med. Biol. 180, 757–762 ).Google Scholar
  5. Opitz, N. und Lubbers, D.W. (1984). Optische Messverfahren zur Messung von Sauerstoffpartialdrucken in Gasen und biologischen Flussigkeiten. Chem. Ing. Tech., 56, 248–249.CrossRefGoogle Scholar
  6. Stern, H. und Volmer, M. (1919). Uber die Abklingzeit der Fluoreszenz. Z. Phys. 20, 183.Google Scholar
  7. Vaughan, W.M. and Weber, G. (1970). Oxygen quenching of pyrenebutyric acid fluorescence in water. A dynamic probe of the microenvironment. Biochemistry, 9, 464.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • N. Opitz
    • 1
  • D. W. Lubbers
    • 1
  1. 1.Max-Planck-Institut fur SystemphysiologieDortmund 1Germany

Personalised recommendations