The Microphotometric Determination of the Variability of Oxygen Saturation of Erythrocytes Lying within Rouleaux

  • D. W. Lubbers
  • H. Grisar
  • T. E. J. Gayeski
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 215)


It was found that by using nonlinear multicomponent analysis with the spectra of oxygenated and deoxygenated haemoglobin as basic spectra the mean O2 saturation of 2 to 3 red cells lying in a rouleau could be determined with an accuracy of 0.5–1.0%. At the same PO2 and PCO2 distinct differences in O2 saturation were found in different red cells; for 50% of the saturation values the differences were in the range ± 1.5%, for 30% of the values, the differences were in the range of ± 3% and 15% lay in the range of ± 4.5%. Only 5% of saturation differences were larger than 4.6%. These differences are so large that they have to be considered in calculations of the PO2 from O2 saturation measurements.


Oxygen Affinity Transformation Curve Saturation Measurement Basic Spectrum Saturation Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astrup, P., Engel, K., Severinghaus, J.W. and Munson, E. (1965). The influence of temperature and pH on the dissociation curve of oxyhaemoglobin of human blood. Scand. J. Clin. Lab. Invest. 17, 514–523.Google Scholar
  2. Bartels, H. and Baumann, R. (1977). Respiratory function of hemoglobin. In: Respiratory Physiology II. Ed. Widdicombe, J.G., University Park Press, Baltimore, ( Int. Rev. Physiol. 14, 107–134 ).Google Scholar
  3. Duhm, J. and Gerlach, E. (1974). Metabolism and function of 2,3-diphosphoglycerate in red blood cells. In: The Human Red Cell In Vitro. Eds Greenwalt, T.J. and Jamieson, G.A., Grune & Stratton, Inc., New York, pp. 111–156.Google Scholar
  4. Edwards, M.J. and Rigas, D.W. (1967). Electrolyte labile increase of oxygen affinity during in vivo aging of hemoglobin. J. Clin. Invest. 46, 1579–1588.CrossRefGoogle Scholar
  5. Fornanni, G. (1968). Biochemical modifications during the life span of the erythrocyte. Ital. J. Biochem. 16, 258–330.Google Scholar
  6. Gayeski, T.E.J., Hoffmann, J., Grisar, H. and Lubbers, D.W. (1985). The calculation of hemoglobin saturation in single erythrocytes. In: Oxygen Transport to Tissue-VII. Eds Kreuzer, F., Cain. S.M., Turek, Z. and Goldstick, T.K., Plenum Press, New York and London, ( Adv. Exp. Med. Biol. 191, 899–908 ).Google Scholar
  7. Haidas, S., Labie, D. and Kaplan, J.C. (1971). 2,3-diphosphoglycerate content and oxygen affinity as a function of red cell age in normal individuals. Blood, 38, 463–467.Google Scholar
  8. Hoffmann, J., Wodick, R., Hannebauer, F. and Lubbers, D.W. (1984). Quantitative analysis of reflection spectra of the surface of the guinea pig brain. In: Oxygen Transport to Tissue-V. Eds Lubbers, D.W., Acker, H., Leniger-Follert, E. and Goldstick, T.K., Plenum Press, New York and London, ( Adv. Exp. Med. Biol. 169, 831–839 ).CrossRefGoogle Scholar
  9. Hutten, H. (1969). Der Einfluss einer inhomogenen Verteilung auf die Messung der Extinktion an monoerythrocytaren Schichten und an einzelnen Erythrocyten. Pflugers Arch. 305, 177–189.CrossRefGoogle Scholar
  10. Lubbers, D.W. and Hoffmann, J. (1981). Absolute reflection photometry at organ surfaces. In: Cardiovascular Physiology of Heart, Peripheral Circulation and Methodology. Eds Kovach, A.G.B., Monos, E. and Rubanyi, G., Pergamon Press, Oxford and Akademiai Kiado, Budapest, ( Adv. Physiol. Sci. 8, 353–361 ).Google Scholar
  11. Lubbers, D.W. and Wodick, R. (1969). The examination of multi-component systems in biological materials by means of a rapid scanning photometer. Appl. Optics, 8, 1055–1062.CrossRefGoogle Scholar
  12. Lubbers, D.W. and Wodick, R. (1972). Schnelle Photometrie komplizierter biochemischer Mehrkomponentensysteme. Z. Anal. Chem. 261, 271–280.CrossRefGoogle Scholar
  13. Schmidt, W. (1984). Sauerstoffbindungseigenschaften von unterschiedlich alten Erythrozyten und ihre Bedeutung bei Ausdauertraining.Dissertation, Hannover.Google Scholar
  14. Shiga, T., Maeda, N., Suda, T., Kon, K. and Sekiya, M. (1979). The decreased membrane fluidity of in vivo aged, human erythrocytes. A spin label study. Biochim. Biophys. Acta, 553, 84–95.CrossRefGoogle Scholar
  15. Waldeck, F. (1967). Ein mikrophotometrisches Verfahren zur Aufnahme der Sauerstoffbindungskurve von einzelnen Erythrocyten. Pflugers Arch. 295, 1–14.CrossRefGoogle Scholar
  16. Wodick, R. and Lubbers, D.W. (1973). Quantitative Analyse von Reflexionsspektren und anderen Spektren mit inhomogenen Lichtwegen an Mehrkomponentensystemen mit Hilfe der Queranalyse, 1. Das Verfahren der Queranalyse bei Mehrkomponentensystemen mit unbekannten, inhomogenen Lichtwegen. Hoppe-Seyler’s Z. Physiol. Chem. 354, 903–915.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • D. W. Lubbers
    • 1
  • H. Grisar
    • 1
  • T. E. J. Gayeski
    • 2
  1. 1.Max-Planck-Institut fur SystemphysiologieDortmundGermany
  2. 2.Medical CenterUniversity of RochesterRochesterUSA

Personalised recommendations