Advertisement

Comparison of Intracellular PO2 and Conditions for Blood-Tissue O2 Transport in Heart and Working Red Skeletal Muscle

  • C. R. Honig
  • T. E. J. Gayeski
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 215)

Abstract

Recent measurements (Honig et al., 1984; Gayeski, Connett and Honig, 1985; Gayeski and Honig, 1986) and mathematical models (Hellums, 1977; Clark et al., 1985; Federspiel and Popel, in press; Groebe and Thews, 1986) indicate that the principal resistance to O2 mass transfer is at the capillary under conditions of high O2 flux. Federspiel and Popel (in press) have described this behaviour by relating the transcapillary O2 flux to a driving force. The factor of proportionality is a mass transfer coefficient homologous to a conductance:
$$J=C\times\left[Pcap{{O}_{2}}-Pcell{{O}_{2}}\right]$$
(1)

Keywords

Mass Transfer Coefficient Maximal Exercise Gracilis Muscle Canine Heart Left Ventricular Free Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashikawa, K., Kanatsuka, H., Suzuki, T. and Takishima, T. (1984). A new microscope system for the continuous observation of the coronary microcirculation in the beating canine left ventricle. Microvasc. Res. 28, 387CrossRefGoogle Scholar
  2. Bassingthwaighte, J.B., Yipintsoi, T. and Harvey, R.B. (1974). Microvasculature of the dog left ventricular myocardium. Microvasc. Res. 7, 229CrossRefGoogle Scholar
  3. Bassingthwaighte, J.B., Yipintsoi, T. and Knopp, T.J. (1984). Diffusional arterio-venous shunting in the heart. Microvasc. Res. 28, 233CrossRefGoogle Scholar
  4. Beyer, R.E., Noble, W.N. and Hirschfeld, T.J. (1962). Alterations of rat-tissue coenzyme Q (ubiquinone) levels by various treatments. Biochim. Biophys. Acta, 57, 376CrossRefGoogle Scholar
  5. Chang, B.-L., Yamakawa, T., Nuccio, J., Pace, R. and Bing, R.J. (1982). Microcirculation of left atrial muscle, cerebral cortex and mesentery of the cat. Circ. Res. 50, 240CrossRefGoogle Scholar
  6. Clark, A., Jr and Clark, P.A.A. (1983). Capture of spatially homogeneous chemical reactions in tissue by freezing. Biophys. J. 42, 25CrossRefGoogle Scholar
  7. Clark, A., Jr and Clark, P.A.A. (1985). Local oxygen gradients near isolated mitochondria. Biophys. J. 48, 931CrossRefGoogle Scholar
  8. Clark, A., Jr, Federspiel, W., Clark, P.A.A. and Cokelet, G.R. (1985). Oxygen delivery from red cells. Biophys. J. 47, 71CrossRefGoogle Scholar
  9. Connett, R.J., Gayeski, T.E.J. and Honig, C.R. (1983). Lactate production in a pure red muscle in absence of anoxia: mechanisms and significance. In: Oxygen Transport to Tissue-IV. Eds Bicher, H.I. and Bruley, D.F., Plenum Press, New York and London, ( Adv. Exp. Med. Biol. 159, 327 ).Google Scholar
  10. Connett, R.J., Gayeski, T.E.J. and Honig, C.R. (1985). An upper bound on the minimum P02 for 02 consumption in red muscle. In: Oxygen Transport to Tissue-VII. Eds Kreuzer, F., Cain, S. M., Turek, Z. and Goldstick, T.K., Plenum Press, New York and London, ( Adv. Exp. Med. Biol. 191, 291 ).Google Scholar
  11. Duran, W.N., Marsicano, T.H. and Anderson, R.W. (1977). Capillary reserve in isometrically contracting dog hearts. Am. J. Physiol. 233, H276Google Scholar
  12. Fabel, H. (1968). Normal and critical 02-supply of the heart. In: Oxygen Transport in Blood and Tissue. Eds Lubbers, D.W., Luft, U.C., Thews, G. and Witzleb, E., Thieme Verlag, Stuttgart, pp. 159–171.Google Scholar
  13. Federspiel, W.J. and Popel, A.S. A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc. Res.Google Scholar
  14. Feigl, E.O. (1983). Coronary physiology. Physiol. Rev. 63, 1Google Scholar
  15. Gayeski, T.E.J. (1982). A cryogenic microspectrophotometric method for measuring myoglobin saturation in subcellular volumes: Application to resting dog gracilis muscle. Ph.D. Dissertation, University of Rochester, Rochester, NY, U.S.A.Google Scholar
  16. Gayeski, T.E.J., Connett, R.J. and Honig, C.R. (1985). Oxygen transport in rest-work transition illustrates new functions for myoglobin. Am. J. Physiol. 248, H914Google Scholar
  17. Gayeski, T.E.J. and Honig, C.R. (1986). O2 gradients from sarcolemma to cell interior in a red muscle at maximal V02. Am. J. Physiol. 251, H789Google Scholar
  18. Groebe, K. and Thews, G. (1986). Theoretical analysis of oxygen supply to contracted skeletal muscle. In: Oxygen Transport to Tissue-VIII. Ed. Longmuir, Z.S., Plenum Press, New York and London, ( Adv. Exp. Med. Biol. 200, 495 ).CrossRefGoogle Scholar
  19. Grunewald, W.A. and Sowa, W. (1978). Distribution of the myocardial tissue P02 in the rat and the inhomogeneity of the coronary bed. Pflugers Arch. 374, 57CrossRefGoogle Scholar
  20. Hellums, J.D. (1977). The resistance of oxygen transport in the capillaries relative to that in the surrounding tissue. Microvasc. Res. 13, 131CrossRefGoogle Scholar
  21. Henquell, L. and Honig, C.R. (1976). O2 extraction of right and left ventricles. Proc. Soc. Exp. Biol. Med. 152, 52Google Scholar
  22. Honig, C.R., Frierson, J.L. and Gayeski, T.E.J. Red cell spacing and recruitment of red cell-containing capillary segments in rat heart: role in 02 transport. Am. J. Physiol.Google Scholar
  23. Honig, C.R., Gayeski, T.E.J., Federspiel, W., Clark, A., Jr and Clark, P. (1984). Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. In: Oxygen Transport to Tissue-V. Eds Lubbers, D.W., Acker, H., Leniger-Follert, E. and Goldstick, T.K., Plenum Press, New York and London, ( Adv. Exp. Med. Biol. 169, 23 ).CrossRefGoogle Scholar
  24. Honig, C.R. and Odoroff, C.L. (1981). Calculated dispersion of capillary transit times: significance for oxygen exchange. Am. J. Physiol. 240, H199Google Scholar
  25. Huhmann, W., Niesel, W. und Grote, J. (1967). Untersuchungen uber die Bedingungen fur die Sauerstoffversorgung des Myokards an perfundierten Rattenherzen. Pflugers Arch. 294, 250CrossRefGoogle Scholar
  26. Kirk, E.S. and Honig, C.R. (1964). Nonuniform distribution of blood flow and gradients of oxygen tension within the heart. Am. J. Physiol., 207, 661Google Scholar
  27. Losse, B., Schuchhardt, S. and Niederle, W. (1975). The oxygen pressure histogram in the left ventricular myocardium of the dog. Pflugers Arch. 356, 121CrossRefGoogle Scholar
  28. Makino, N., Kanaide, H., Yoshimura, R. and Nakamura, M. (1983). Myoglobin oxygenation remains constant during the cardiac cycle. Am. J. Physiol. 245, H237Google Scholar
  29. Martin, J.L., Duvelleroy, M., Teisseine, B. and Durable, M. (1979). Effect of an increase in Hb02 affinity on the calculated capillary recruitment of an isolated rat heart. Pflugers Arch. 382, 57CrossRefGoogle Scholar
  30. Mildenberger, R.R., L’Abbate, A., Zborowska-Sleus, D.T. and Klassen, G.A. (1977). The relationship between oxygen extraction and mean transit time in the canine heart. Can. J. Physiol. Pharmac. 55, 478CrossRefGoogle Scholar
  31. Silver, I.A. (1973). The oxygen microelectrode. In: Oxygen Transport to Tissue. Eds Bicher, H.I. and Bruley, D.F., Plenum Press, New York and London, ( Adv. Exp. Med. Biol. 37A, 478 ).Google Scholar
  32. Skolasinska, K., Harbig, K., Lubbers, D.W. and Wodick, R. (1978). P02 and microflow histograms of the beating heart in response to changes in arterial P02. Basic Res. Cardiol. 73, 307CrossRefGoogle Scholar
  33. von Restorff, W., Holtz, J. and Bassenge, E. (1977). Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflugers Arch. 372, 181CrossRefGoogle Scholar
  34. Whalen, W.J., Nair, P. and Buerk, D. (1973). Oxygen tension in the beating cat heart in situ. In: Oxygen Supply. Eds Kessler, M., Bruley, D.F., Clark, L.C., Jr, Lubbers, D.W., Silver, I.A. and Strauss, J., Univ. Park Press, Baltimore, pp. 199Google Scholar
  35. Wieringa, P.A., Spaan, J.A.E., Stassen, H.G. and Laird, J.D. (1982). Heterogeneous flow distribution in a three dimensional network simulation of the myocardial microcirculation - a hypothesis. Microcirculation, 2, 195Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • C. R. Honig
    • 1
  • T. E. J. Gayeski
    • 1
  1. 1.School of Medicine and DentistryThe University of RochesterRochesterUSA

Personalised recommendations