Time Courses of Erythrocytic Oxygenation in Capillaries of the Lung: Lower and Upper Bounds on Red Cell Transit Times

  • K. Groebe
  • G. Thews
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 215)


With the aid of a 2-dimensional computer simulation (Groebe and Thews, 1986), time courses of erythrocytic oxygen uptake in the lung were calculated.


Transit Time Oxygen Uptake American Physiological Society Shunt Fraction Capillary Recruitment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartels, H., Beer, R., Fleischer, E., Hoffheinz, H.J., Krall, J., Rodewald, G., Wenner, J. und Witt, I. (1955). Bestimmung von Kurzschlussdurchblutung und Diffusionskapazitat der Lunge bei Gesunden und Lungenkranken. Pflugers Arch. 261, 99–132.CrossRefGoogle Scholar
  2. Clark, A., Jr, Federspiel, W.J., Clark, P.A.A. and Cokelet, G.R. (1985). Oxygen delivery from red cells. Biophys. J. 47, 171–181.CrossRefGoogle Scholar
  3. Gehr, P., Bachofen, M. and Weibel, E.R. (1978). The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol. 32, 121–140.CrossRefGoogle Scholar
  4. Goldstick, T.K., Ciuryla, V.T. and Zuckerman, L. (1976). Diffusion of oxygen in plasma and blood. In: Oxygen Transport to Tissue-II. Eds Grote, J., Reneau, D. and Thews, G., Plenum Press, New York and London, ( Adv. Exp. Med. Biol. 75, 183–190 ).Google Scholar
  5. Groebe, K. and Thews, G. (1986). Theoretical analysis of oxygen supply to contracted skeletal muscle. In: Oxygen Transport to Tissue-VIII. Ed. Longmuir, I.S., Plenum Press, New York and London, ( Adv. Exp. Med. Biol. 200, 495–514 ).CrossRefGoogle Scholar
  6. Johnson R.L., Jr, Spicer, W.S., Bishop, J.M. and Forster, R.E. (1960). Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J. Appl. Physiol. 15, 893–902.Google Scholar
  7. Miyamoto, Y. and Moll, W. (1971). Measurements of dimensions and pathway of red cells in rapidly frozen lungs in situ. Respir. Physiol. 12, 141–156.CrossRefGoogle Scholar
  8. Severinghaus, J.W. (1965). Blood gas concentrations. In: Handbook of Physiology, Sect. 3, Respiration, Vol. II. Eds Fenn, W.O. and Rahn, H., American Physiological Society, Washington D.C., pp. 1475–1487.Google Scholar
  9. Thews, G. (1979). Der Einfluss von Ventilation, Perfusion, Diffusion und Distribution auf den pulmonalen Gasaustausch. In: Funktionsanalyse biologischer Systeme. Bd. 5. Ed. Thews, G., Akademie der Wissenschaften und der Literatur, Mainz, Steiner, Weisbaden.Google Scholar
  10. Thews, G. (1984). Theoretical analysis of the pulmonary gas exchange at rest and during exercise. Int. J. Sports Med. 5, 113–119.CrossRefGoogle Scholar
  11. Vaupel, P. (1976). Effect of percentual water content in tissues and liquids on the diffusion coefficients of O2, CO2, N2, and H2. Pflugers Arch. 361, 201–204.CrossRefGoogle Scholar
  12. Weibel, E.R. (1963). Morphometry of the Human Lung. Springer, Berlin.Google Scholar
  13. Weibel, E.R. (1964). Morphometrics of the lung. In: Handbook of Physiology, Sect.3, Respiration, Vol.I. Eds Fenn, W.O. and Rahn, H., American Physiological Society, Washington D.C., pp. 285–307.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • K. Groebe
    • 1
  • G. Thews
    • 1
  1. 1.Physiologisches InstitutUniversitat MainzMainzGermany

Personalised recommendations