Advertisement

Hemoglobin as a Promoter of Central Nervous System Damage

  • John W. Eaton
  • Douglas A. Peterson
  • S. M. H. Sadrzadeh
Part of the NATO ASI Series book series (NSSA, volume 189)

Abstract

The full extent of an injury to the central nervous system (CNS) is often not evident until long after the initial insult. Multiple factors may be involved, but one which appears to be of great importance is hemorrhage into the site of damage.1 Indeed, in at least one experimental model of CNS trauma, neutrophils only accumulate in those areas to which blood has extravasated.2 We have hypothesized that free hemoglobin (Hb) may promote oxidative reactions and, thereby, certain inflammatory events. Indeed, in terms of susceptibility to oxidation, the brain would appear to be a combustible tissue, low in oxidant defense enzymes3 and rich in polyunsaturated fatty acids. In this paper, we adduce evidence in support of the general proposition that fib, and especially iron derived therefrom, may be particularly hazardous within the interstitium of the CNS, acting to promote oxidative damage to areas previously subject to hemorrhage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Oehmichen, Inflammatory cells in the central nervous system: An integrating concept based on recent research in pathology, immunology, and forensic medicine, in: “Progress in Neurology,” Vol. 5, H. M. Zimmerman, ed., Raven Press, New York (1983).Google Scholar
  2. 2.
    E. D. Means and D. K. Anderson, Neurophagia by leukocytes in experimental spinal cord injury, J. Neuropath. Exp. Neurol. 42: 707 (1983).CrossRefGoogle Scholar
  3. 3.
    G. Cohen, Oxidative stress in the nervous system, in: “Oxidative Stress,” H. Sies, ed., Academic Press, London (1985).CrossRefGoogle Scholar
  4. 4.
    S. S. Panter, S. M. H. Sadrzadeh, P. E. Hallaway, J. L. Haines, V. E. Anderson and J. W. Eaton, Hypohaptoglobinemia associated with familial epilepsy, J. Exp. Med. 161: 748 (1985).CrossRefGoogle Scholar
  5. 5.
    L. M. Kopeloff, S. E. Barrera and N. Kopeloff, Recurrent convulsive seizures in animals produced by immunologic and chemical means, Am. J. Psycho!. 98: 881 (1942).CrossRefGoogle Scholar
  6. 6.
    L. J. Willmore, G. W. Sypert, J. B. Munson and R. W. Hurd, Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex, Science 200: 1501 (1978).CrossRefGoogle Scholar
  7. 7.
    L. J. Willmore, R. W. Hurd and G. W. Sypert, Epileptiform activity initiated by oral iontophoresis of ferrous and ferric chloride on rat cerebral cortex, Brain Res., 52: 406 (1978).CrossRefGoogle Scholar
  8. 8.
    A. D. Rosen and N. V. Frumin, Focal epileptogenesis after intracortical hemoglobin injection, Exp. Neurol. 66: 277 (1979).CrossRefGoogle Scholar
  9. 9.
    L. J. Willmore and J. J. Rubin, Antiperoxidant pretreatment and iron-induced epileptiform discharges in the rat: EEG and histopathologic studies, Neurology 31: 63 (1981).CrossRefGoogle Scholar
  10. 10.
    P. Levitt, W. Wilson and R. Wilkins, The effects of subarachnoid blood on the electrocorticogram of the cat, J. Neurosurg. 35: 185 (1971).CrossRefGoogle Scholar
  11. 11.
    E. J. Hammond, R. E. Ramsay, J. H. Villarreal and G. J. Wilder, Effects of intra-cortical injection of blood and blood components on the electrocorticogram, Epilepsia 21: 3 (1980).CrossRefGoogle Scholar
  12. 12.
    J. E. Repine, J. W. Eaton, J. W. Anders, J. R. Hoidal and R. B. Fox, Generation of hydroxyl radical by enzymes, chemicals and human phagocytes in vitro: Detection using the anti-inflammatory agent — dimethyl sulfoxide (DMSO), J. Clin. Invest. 64: 1642 (1979).CrossRefGoogle Scholar
  13. 13.
    S. M. Klein, G. Cohen and A. I. Cederbaum, The interaction of hydroxyl radicals with dimethylsulfoxide produces formaldehyde, FEBS Lett 116: 220 (1980)CrossRefGoogle Scholar
  14. 14.
    S. M. Klein, G. Cohen and A. I. Cederbaum, Production of formaldehyde during metabolism of dimethyl sulfoxide by hydroxyl radical-generating systems, Biochemistry 20: 6006 (1981).CrossRefGoogle Scholar
  15. 15.
    S. M. H. Sadrazdeh, E. Graf, S. S. Panter, P. E. Hallaway and J. W. Eaton, Hemoglobin: A biologic fenton reagent, J. Biol. Chem. 259: 14354 (1984).Google Scholar
  16. 16.
    J. M. C. Gutteridge, R. Richmond and B. Halliwell, Inhibition of the iron-catalyzed formation of hydroxyl radicals from superoxide and of lipid per-oxidation by desferrioxamine, Biochem. J. 184: 469 (1979).CrossRefGoogle Scholar
  17. 17.
    E. Graf, J. R. Mahoney, R. G. Bryant and J. W. Eaton, Iron-catalyzed hydroxyl radical formation: Stringent requirement for free iron coordination site, J. Biol. Chem. 259: 3620 (1984).PubMedGoogle Scholar
  18. 18.
    S. M. H. Sadrzadeh, D. K. Anderson, S. S. Panter, P. E. Hallaway and J. W. Eaton Hemoglobin potentiates central nervous system damage, J. Clin. Invest. 79: 662 (1987).CrossRefGoogle Scholar
  19. 19.
    S. M. H. Sadrzadeh and J. W. Eaton, Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate, J. Clin. Invest. 82: 1510 (1988).CrossRefGoogle Scholar
  20. 20.
    Shalev, M. Leida, R. P. Hebbel, H. S. Jacob and J. W. Eaton, Abnormal erythrocyte calcium homeostasis in oxidant-induced hemolytic disease, Blood 58: 1232 (1981).Google Scholar
  21. 21.
    J. M. C. Gutteridge, Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides, FEBS Letts. 201: 291 (1986).CrossRefGoogle Scholar
  22. 22.
    D. A. Peterson and J. W. Eaton, A possible mechanism for the tumor cell cytotoxicity of arachidonic acid, manuscript in preparation (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • John W. Eaton
    • 1
  • Douglas A. Peterson
    • 1
  • S. M. H. Sadrzadeh
    • 1
  1. 1.Dight LaboratoriesUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations