Free Radical Production by the Mitochondrion

  • Julio F. Turrens
  • Joe M. McCord
Part of the NATO ASI Series book series (NSSA, volume 189)


The electron transport chain located in the mitochondrial inner membrane catalyzes the complete oxidation of NADH to water. This reaction is carried out by a complex system which involves the sequential participation of more than thirty redox-active components including flavoproteins (dehydrogenases), iron-sulfur proteins (dehydrogenases, Rieske protein, etc.), hemecontaining proteins (cytochromes), and a lipid (ubiquinone). Some of these components carry only one electron at a time (cytochromes of the b and c type), while others transport two (flavoproteins) and four (cytochrome oxidase) electrons in a single step. As a consequence, there are several points in the chain in which a two-electron carrier must reduce a one-electron carrier, producing free radical intermediates. One of them, ubisemiquinone, is present in relatively large amounts in the respiring respiratory chain, and may be detected by electron spin resonance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Turrens and A. Boveris, Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochem. J. 191: 421 (1980).CrossRefPubMedGoogle Scholar
  2. 2.
    A. Boveris and B. Chance, The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen, Biochem. J. 134: 707 (1973).CrossRefPubMedGoogle Scholar
  3. 3.
    J. F. Turrens, A. Alexandre and A. L. Lehninger, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria, Arch. Biochem. Biophys. 237: 408 (1985).CrossRefGoogle Scholar
  4. 4.
    T. Yonetani, Studies on cytochrome c peroxidase. H. Stoichiometry between enzyme, H2O2, and ferrocytochrome c and enzymic determination of extinction coefficients of cytochrome c, J. Biol. Chem. 240: 4509 (1965).Google Scholar
  5. 5.
    B. Chance, H. Sies and A. Boveris, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59: 527 (1979).CrossRefGoogle Scholar
  6. 6.
    C. E. Nelson, E. V. Sitzman, C H Kang and E. Margoliash, Preparation of cytochrome c peroxidase from Baker’s yeast, Anal. Biochem. 83: 622 (1977).CrossRefGoogle Scholar
  7. 7.
    A. Boveris, N. Oshino and B. Chance, The cellular production of hydrogen peroxide, Biochem. J. 128: 617 (1972).CrossRefPubMedGoogle Scholar
  8. 8.
    J. F. Turrens, B. A. Freeman, J. G. Levitt and J. D. Crapo, The effect of hyperoxia on superoxide production by lung submitochondrial particles, Arch. Biochem. Biophys. 217: 401 (1982).CrossRefGoogle Scholar
  9. 9.
    J. F. Turrens, B. A. Freeman and J. D. Crapo, Hyperoxia increases hydrogen peroxide formation by lung mitochondria and microsomes, Arch. Biochem. Biophys. 217: 411 (1982).CrossRefGoogle Scholar
  10. 10.
    C. D. Malis and J. V. Bonventre, Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria, J. Biol. Chem. 261: 14201 (1986).Google Scholar
  11. 11.
    A. D. Romaschin, I. Rebeyka, G. J. Wilson and D. A. G. Mickle, Conjugated dienes in ischemic and reperfused myocardium: an in vivo chemical signature of oxygen free radical mediated injury, J. Mol. CelL Cardiol. 19: 289 (1987).CrossRefGoogle Scholar
  12. 12.
    P. E. Arnold, V. J. Van Putten, D. Lumlertgul, T. J. Burke and R. W. Schrier, Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia, Am. J. PhysioL 250: F357 (1986).Google Scholar
  13. 13.
    C. Steenbergen, E. Murphy, L. Levy and R. E. London, Elevation in cytosolic free calcium early in myocardial ischemia in perfused rat heart, Circ. Res. 60: 700 (1987).CrossRefGoogle Scholar
  14. 14.
    J. M. McCord, Oxygen-derived free radicals in post-ischemic tissue injury, N. Engl. J. Med. 312: 159 (1985).CrossRefGoogle Scholar
  15. 15.
    L. J. Eddy, J. R. Stewart, H. P. Jones, T. D. Engerson, J. M. McCord, J. M. Downey, Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts, Am. J. Physiol. 253 (Heart 22): H709 (1987).Google Scholar
  16. 16.
    J. M. Downey, T. Miura, L. J. Eddy, D. E. Chambers, T. Mellert, D. J. Hearse, D. M. Yellon, Xanthine oxidase is not a source of free radicals in the ischemic rabbit heart, J. Mol. Cell. Cardiol. 19: 1053 (1987).CrossRefGoogle Scholar
  17. 17.
    J.M. McCord, B.A. Omar and W.J. Russell, Sources of Oxygen-Derived Radicals in IschemiaReperfusion, in T. Yoshikawa and E. Niki (eds.), Chemica4 Biochemical and Medical Aspects of Free Radicals,Elsevier Science, Amsterdam, in press, (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Julio F. Turrens
    • 1
  • Joe M. McCord
    • 1
  1. 1.Department of BiochemistryCollege of Medicine University of South AlabamaMobileUSA

Personalised recommendations