Free Radical Production by the Mitochondrion

  • Julio F. Turrens
  • Joe M. McCord
Part of the NATO ASI Series book series (NSSA, volume 189)


The electron transport chain located in the mitochondrial inner membrane catalyzes the complete oxidation of NADH to water. This reaction is carried out by a complex system which involves the sequential participation of more than thirty redox-active components including flavoproteins (dehydrogenases), iron-sulfur proteins (dehydrogenases, Rieske protein, etc.), hemecontaining proteins (cytochromes), and a lipid (ubiquinone). Some of these components carry only one electron at a time (cytochromes of the b and c type), while others transport two (flavoproteins) and four (cytochrome oxidase) electrons in a single step. As a consequence, there are several points in the chain in which a two-electron carrier must reduce a one-electron carrier, producing free radical intermediates. One of them, ubisemiquinone, is present in relatively large amounts in the respiring respiratory chain, and may be detected by electron spin resonance.


Electron Spin Resonance Respiratory Chain Xanthine Oxidase Mitochondrial Respiratory Chain NADH Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Turrens and A. Boveris, Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochem. J. 191: 421 (1980).PubMedGoogle Scholar
  2. 2.
    A. Boveris and B. Chance, The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen, Biochem. J. 134: 707 (1973).PubMedGoogle Scholar
  3. 3.
    J. F. Turrens, A. Alexandre and A. L. Lehninger, Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria, Arch. Biochem. Biophys. 237: 408 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Yonetani, Studies on cytochrome c peroxidase. H. Stoichiometry between enzyme, H2O2, and ferrocytochrome c and enzymic determination of extinction coefficients of cytochrome c, J. Biol. Chem. 240: 4509 (1965).PubMedGoogle Scholar
  5. 5.
    B. Chance, H. Sies and A. Boveris, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59: 527 (1979).PubMedGoogle Scholar
  6. 6.
    C. E. Nelson, E. V. Sitzman, C H Kang and E. Margoliash, Preparation of cytochrome c peroxidase from Baker’s yeast, Anal. Biochem. 83: 622 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Boveris, N. Oshino and B. Chance, The cellular production of hydrogen peroxide, Biochem. J. 128: 617 (1972).PubMedGoogle Scholar
  8. 8.
    J. F. Turrens, B. A. Freeman, J. G. Levitt and J. D. Crapo, The effect of hyperoxia on superoxide production by lung submitochondrial particles, Arch. Biochem. Biophys. 217: 401 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    J. F. Turrens, B. A. Freeman and J. D. Crapo, Hyperoxia increases hydrogen peroxide formation by lung mitochondria and microsomes, Arch. Biochem. Biophys. 217: 411 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    C. D. Malis and J. V. Bonventre, Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria, J. Biol. Chem. 261: 14201 (1986).PubMedGoogle Scholar
  11. 11.
    A. D. Romaschin, I. Rebeyka, G. J. Wilson and D. A. G. Mickle, Conjugated dienes in ischemic and reperfused myocardium: an in vivo chemical signature of oxygen free radical mediated injury, J. Mol. CelL Cardiol. 19: 289 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    P. E. Arnold, V. J. Van Putten, D. Lumlertgul, T. J. Burke and R. W. Schrier, Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia, Am. J. PhysioL 250: F357 (1986).PubMedGoogle Scholar
  13. 13.
    C. Steenbergen, E. Murphy, L. Levy and R. E. London, Elevation in cytosolic free calcium early in myocardial ischemia in perfused rat heart, Circ. Res. 60: 700 (1987).PubMedGoogle Scholar
  14. 14.
    J. M. McCord, Oxygen-derived free radicals in post-ischemic tissue injury, N. Engl. J. Med. 312: 159 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    L. J. Eddy, J. R. Stewart, H. P. Jones, T. D. Engerson, J. M. McCord, J. M. Downey, Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts, Am. J. Physiol. 253 (Heart 22): H709 (1987).PubMedGoogle Scholar
  16. 16.
    J. M. Downey, T. Miura, L. J. Eddy, D. E. Chambers, T. Mellert, D. J. Hearse, D. M. Yellon, Xanthine oxidase is not a source of free radicals in the ischemic rabbit heart, J. Mol. Cell. Cardiol. 19: 1053 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    J.M. McCord, B.A. Omar and W.J. Russell, Sources of Oxygen-Derived Radicals in IschemiaReperfusion, in T. Yoshikawa and E. Niki (eds.), Chemica4 Biochemical and Medical Aspects of Free Radicals,Elsevier Science, Amsterdam, in press, (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Julio F. Turrens
    • 1
  • Joe M. McCord
    • 1
  1. 1.Department of BiochemistryCollege of Medicine University of South AlabamaMobileUSA

Personalised recommendations