Quinone Redox Cycling and the Protective Effect of DT Diaphorase

  • Helmut Sies
Part of the NATO ASI Series book series (NSSA, volume 189)


The one-electron oxidation-reduction cycling of quinones, semiquinones and hydroquinones contributes to the generation of reactive oxygen species and, consequently, toxicity, carcinogenicity and cell damage, e.g. to enzymes, DNA and membranes. In this process of redox cycling, interest has focused on the biochemistry, molecular biology, toxicology and physiology of the enzyme, NADPH:quinone oxidoreductase, also known as DT diaphorase, catalyzing the two-electron reduction of quinones.


Redox Cycling Quinone Oxidoreductase Quinone Reductase Aromatic Nitro Compound Calcium Sequestration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kappus and H. Sies, Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation, Experientia 37: 1233 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    C. Lind, P. Hochstein and L. Ernster, DT diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide radical formation, Arch. Biochem.Biophys. 216: 178 (1982).CrossRefGoogle Scholar
  3. 3.
    L. Ernster, R.W. Estabrook, P. Hochstein and S. Orrenius (eds.), DT Diaphorase. A Quinone reductase with special functions in cell metabolism and detoxication, Chemica Scripta 27A:1 (1987).Google Scholar
  4. 4.
    H. Sies, Oxidative Stress: Quinone Redox Cycling, ISI Atlas of Science: Biochemistry 1: 109 (1988).Google Scholar
  5. 5.
    G. Powis, E.M. Hodnett, K.S. Santone, K.S. See and D.C. Melder, Role of metabolism and oxidation-reduction cycling in the cytotoxicity of antitumor quinoneimines and quinonediimines, Canc. Res. 47: 2363 (1987).Google Scholar
  6. 6.
    S. Orrenius, Oxidative stress studied in intact mammalian cells, Phil. Trans. R. Soc. Lond. B311: 673 (1985).CrossRefGoogle Scholar
  7. 7.
    A.S. Atallah, J.R. Landolph, L. Ernster and P. Hochstein, DT-diaphorase in C3H/10T1/2 mouse embryo cells, Biochem.Pharmacol. 37:2451 (1988).CrossRefGoogle Scholar
  8. 8.
    P.I. Chesis, D.E. Levin, M.T. Smith, L. Ernster and B.N. Ames, Mutagenicity of quinones: pathways of metabolic activation and detoxication. Proc. Natl. Acad. Sci. USA, 81: 1696 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    S. De Flora, C. Bennicelli, A. Camoirano, D. Serra and P.Hochstein, Influence of DT diaphorase on the mutagenicity of organic and inorganic compounds, Carcinogenesis 9: 611 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Sies. Biochemistry of oxidative stress, Angew. Chem. Int. Ed. Engl. 25:1058 (1986).CrossRefGoogle Scholar
  11. 11.
    H. De Groot, T. Noll and H. Sies, Oxygen dependence and subcellular partitioning of hepatic menadione-mediated oxygen uptake, Arch. Biochem. Biophys. 243: 556 (1985).CrossRefGoogle Scholar
  12. 12.
    H. De Groot, T. Noll and H. Sies, Oxygen dependence and subcellular partitioning of hepatic menadione-mediated oxygen uptake, Arch. Biochem. Biophys. 243: 556 (1985).CrossRefGoogle Scholar
  13. 13.
    J.B. Williams, A.Y.H. Lu, R.G. Cameron and C.B. Pickett, Rat-liver NADPH-quinone reductase - construction of a quinone reductase cDNA clone and regulation of quinone reductase messenger-RNA by 3-methylcholanthrene and in persistent hepatocyte nodules induced by chemical carcinogens, J. Biol. Chem. 261: 5524 (1986).PubMedGoogle Scholar
  14. 14.
    H.J. Prochaska and P. Talalay, Purification and characterization of two isofunctional forms of NAD(P)H-Quinone reductase from mouse liver, J. Biol. Chem. 261: 1372 (1986).PubMedGoogle Scholar
  15. 15.
    H. Wefers, T. Komai, P. Talalay and H. Sies, Protection against reactive oxygen species by NAD(P)H: quinone reductase induced by the dietary antioxidant butylated hydroxyanisole (BHA). Decreased hepatic low-level chemiluminescence during quinone redox cycling, FEBS Lett. 169: 63 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    H.J. Prochaska, P. Talalay and H. Sies, Direct protective effect of NAD(P)H: Quinone reductase against menadione-induced chemiluminescence of postmitochondrial fractions of mouse liver, J. Biol. Chem. 262: 1931 (1987).PubMedGoogle Scholar
  17. 17.
    J.A. Robertson, H.C. Chen and D.W. Nebert, NADPH-menadione oxidoreductase - novel purification of enzyme, cDNA and complete amino-acid sequence and gene regulation, J. Biol. Chem. 261: 15794 (1986).PubMedGoogle Scholar
  18. 18.
    J.A. Robertson and D.W. Nebert, Autoregulation plus positive and negative elements controlling transcription of genes in the (Ah) battery, Chem. Scripta 27A: 83 (1987).Google Scholar
  19. 19.
    G. Wagner, U. Pott, M. Bruckschen and H. Sies, Effects of 5-azacytidine and methyl-group definiciency on NAD(P)H: quinone oxidoreductase and GSH S-transferase in liver, Biochem. J. 251: 825 (1988).Google Scholar
  20. 20.
    H.G. Williams-Ashman and C. Huggins, Oxydation of reduced pyridine nucleotides in mammary gland and adipose tissue following treatment with polynuclear hydrocarbons, Med.Exper. 4: 223 (1961).Google Scholar
  21. 21.
    M.J. De Long, P. Dolan, A.B. Santamaria and E. Bueding, 1,2-Dithiol-3-thione analogs: effects on NAD(P)H: quinone reductase and glutathione levels in murine hepatana cells,Carcinogenesis 7: 977 (1986).Google Scholar
  22. 22.
    D. Di Monte, D. Ross, G. Bellomo, L. Eklöw and S. Orrenius, Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes,Arch. Biochem. Biophys. 235: 334 (1984).CrossRefGoogle Scholar
  23. 23.
    G. Bellomo, F. Mirabelli, D. Di Monte, P. Richelmi, H. Thor, C. Orrenius and S. Orrenius, Formation and reduction of glutathione-protein mixed disulfides during oxidative stress, Biochem. Pharmacol. 36: 1313 (1987).Google Scholar
  24. 24.
    D.B. Hinshaw, L.A. Sklar, B. Bohl, I.U. Schraufstatter, P.A. Hyslop, M.W. Rossi, R.G. Spragg and C.G. Cochrane, Cytoskeletal and morphologic impact of cellular oxidant injury, Am. J. Path. 123: 454 (1986).PubMedGoogle Scholar
  25. 25.
    F. Mirabelli, A. Salis, V. Marinoni, G. Finardi, G. Bellomo, H. Thor and S. Orrenius, Menadione-induced bleb formation in hepatocytes is associated with the oxidation of thiol groups in actin, Arch. Biochem. Biophys. 264: 261 (1988).CrossRefGoogle Scholar
  26. 26.
    B. Frei, K.H. Winterhalter and C. Richter, Menadione-(2-Methyl-1,4naphtoquinone-) Dependent Enzymatic Redox Cycling and Calcium Release by Mitochondria, Biochemistry 25: 4438 (1985).CrossRefGoogle Scholar
  27. 27.
    L. Rossi, G.A. Moore, S. Orrenius and P.J. O’Brien, Quinone toxicity in hepatocytes without oxidative stress, Arch. Biochem. Biophys. 251: 25 (1986).CrossRefGoogle Scholar
  28. 28.
    C.N. Oliver, B. Ahn, E.J. Moerman, S. Goldstein and E.R. Stadtman, Age-related changes in oxidized proteins, J. Biol. Chem. 262: 5488 (1987).PubMedGoogle Scholar
  29. 29.
    K.J.A. Davies, Protein damage and degradation by oxygen radicals, J. Biol. Chem. 262: 9895 (1987).PubMedGoogle Scholar
  30. 30.
    N.M. Scherer and D.W, Deamer, Oxidative stress impairs the function of sarcoplasmic-reticulum by oxidation of sulfhydryl-groups in the Ca2+ATPase, Arch. Biochem. Biophys. 246: 589 (1986).CrossRefGoogle Scholar
  31. 31.
    P. Nicotera, P. Hartzell, C. Baldi, S.A. Svensson, G. Bellomo and S. Orrenius S, Cystamine illduces toxicity in hepatocytes through the elevation of cytosolic Ca + and the stimulation of a nonlysosomal proteolytic system, J.Biol. Chem. 261: 14628 (1986).Google Scholar
  32. 32.
    M.G. Miller, A. Rodgers and G.M. Cohen, Mechanism of toxicity of naphthoquinones to isolated hepatocytes, Biochem. Pharm. 35: 1177 (1986).Google Scholar
  33. 33.
    J.G. Liehr, Possible role of 4,4-Diethylstilbestrol quinone in diethylstilbestrol carcinogenesis. J. Tox. Env. H. 16: 693 (1985).CrossRefGoogle Scholar
  34. 34.
    M.T. Smith, Quinones as mutagens, carcinogens, and anticancer agents - introduction and overview, J. Tox. Env. H. 16: 665 (1985).CrossRefGoogle Scholar
  35. 35.
    M.S. Berger, Use of quinones in brain-tumor therapy - preliminary results of preclinical laboratory investigations, J. Tox. Env. H. 16: 713 (1985).CrossRefGoogle Scholar
  36. 36.
    A. Begleiter, Studies on the mechanism of action of quinone antitumor agents, Biochem. Pharmacol. 34: 2629 (1985).Google Scholar
  37. 37.
    S.R. Keyes, S. Rockwell and C. Sartorelli, Enhancement of mitomycin C cytotoxicity to hypoxic tumor cells by dicoumarol in vivo and in vitro, Cancer Res. 45: 213 (1985).PubMedGoogle Scholar
  38. 38.
    G.E. Adams and I.J. Stratford, Hypoxia-mediated nitro-heterocyclic drugs in the radio-and chemotherapy of cancer,Biochem. Pharmacol. 35: 71 (1986).Google Scholar
  39. 39.
    J.E. Biaglow, M.E. Varnes, L. Roizen-Towle, E.P. Clark, E.R. Epp, M.B. Astor and E.J. Hall, Biochemistry of reduction of nitro heterocycles, Biochem. Pharmacol. 35: 77 (1986).Google Scholar
  40. 40.
    G. Storz, M.F. Christman, H. Sies and B.N. Ames, Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium, Proc. Natl. Acad. Sci. USA 84: 8917 (1987).PubMedCrossRefGoogle Scholar
  41. 41.
    D.J. McConkey, P. Hartzell, P. Nicotera, A.H. Wyllie and S. Orrenius, Stimulation of endogenous endonuclease activity in hepatocytes exposed to oxidative stress, Toxicol. Lett. 42: 123 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Helmut Sies
    • 1
  1. 1.Institut für Physiologische Chemie IUniversität Düsseldorf Moorenstrasse 5DüsseldorfWest-Germany

Personalised recommendations