Biochemical Mechanisms of Oxidant-Induced Cell Injury

  • Charles G. Cochrane
  • Paul A. Hyslop
  • Janis H. Jackson
  • Ingrid U. Schraufstatter
Part of the NATO ASI Series book series (NSSA, volume 189)


With the current knowledge that oxidants are generated in inflammatory responses of several kinds and participate in the development of tissue injury, it is clearly important to gain greater insight into the mechanisms by which oxidants damage cells and extracellular tissues. For the past few years we have studied the effects on target cells of oxidants that are generated by stimulated leukocytes,in order to gain insight into the mechanisms by which externally generated oxidants cause functional and structural damage to these target cells.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nathan, CF, Silverstein SC, Brukner LH, Cohn ZA. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J. Exp. Med. 1979: 149: 100–113.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Simon RH, Scoggin CH, Patterson D. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J. Biol. Chem. 1981: 256: 7181–7186.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Weiss SJ, Young J., LoBuglio AF, Slivka A. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J. Clin. Invest. 1981: 68: 714–724.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Jarrick BA, Nathan CF, Griffith OW, Cohn ZA. Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J. Biol. Chem. 1982: 257 (3): 1231–1237.Google Scholar
  5. 5.
    Harlan JM, Levine JD, Callahan KS, Schwartz BR, Harker LA. Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide. J. Clin. Invest. 1984: 73: 706–713.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sies H, Gerstenecker C, Menzel H, Flohe L. Oxidation in the NADP-system and release of GSSG from hemoglobin-free perfused rat liver during peroxidative oxidation of glutathione by hydroperoxidase. FEBS Lett. 1972: 27: 171–175.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sies H, Grafp, Estrela, JM. Hepatic calcium efflux during cytochrome P-450-dependent drug oxidations at the endopiasmic reticulum in intact liver. Proc. Natl. Acad. Sci. 981: 78: 3358.CrossRefGoogle Scholar
  8. 8.
    Schraufstatter IU, Hyslop PA, Spragg RG, Cochrane CG. Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells. J. Clin. Invest. 1985: 76: 1131–1139.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Orrenius S, Jewell SA, Bellomo G, Thor H, Jones DP, Smith MT. Regulation of calcium regulation in the hepatocyte-a critical role of glutathione. In: Functions of Glutathione: Biochemical, Physiological, Toxicological and Clinical Aspects. A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, editors. Raven Press, NY, 261–273, 1983.Google Scholar
  10. 10.
    Jewell SA, Bellomo G, Thor H, Orrenius, S, Smith, MT. Bleb formation in hepatocytes during drug metabolism is caused by distrubances in thiol and calcium ion homeostasis. Science. 1982: 217: 1257.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bellomo G, Jewell SA, Thor H, Orrenius S. Regulation of intracellular calcium compartmentation: Studies with isolated hepatocytes and t-butyl hydroperoxide. Proc. Natl. Acad. Sci. 1982: 79: 6842.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hyslop PA, Hinshaw DB, Schraufstatter IU, Sklar, LA, Spragg RG, Cochrane CG. Intracellular calcium homeostasis during hydrogen peroxide injury to cultured P388D11 cells. J. Cell Physiol. 1986: 129: 356.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hinshaw DB, Sklar LA, Bohl BP, Schraufstatter IU, Hyslop PA, Rossi MW, Spragg RG, Cochrane CG. Cytoskeletal and morphologic impact of cellular oxidant injury. Am. J. Path. 1986: 123: 454–464.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hinshaw DB, Armstrong BC, Burger JM, Beals TF, Hyslop PA. ATP and microfilaments in cellular oxidant injury. Am. J. Path. 1988: 132: 479–488.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Spragg RG, Hinshaw DB, Hyslop PA, Schraufstatter IU, Cochrane CG. Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells following oxidant injury. J. Clin. Invest. 1985: 76: 1471–1476.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hyslop PA, Hinshaw DB, Halsey WA Jr. et al. Mechanisms of oxidant mediated cell injury: The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J. Biol. Chem. 1988: 263: 1665.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG. Oxidant injury of cells: DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin. Invest. 1986: 77: 1312.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Schraufstatter IU, Hyslop PA, Hinshaw DB, Spragg RG, Sklar LA, Cochrane CG. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc. Natl. Acad. Sci. 1986: 83: 4908.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Birnboim HC, Kanabus-Kominska M. The production of DNA strand breaks in human leukocytes by superoxide anion may involve a metabolic process. Proc Natl Acad Sci 1987: 82: 6820–4.CrossRefGoogle Scholar
  20. 20.
    Schraufstatter IU, Hyslop PA, Jackson JH, Cochrane CG. Oxidant-induced DNA damage of target cells. J. Clin. Invest. 1988: 1040–1050.Google Scholar
  21. 21.
    Floyd RA. DNA-ferrous iron catalyzed hydroxyl free radical formation from hydrogen peroxide. Biochem Biophys Res Comm 1981: 1209–15.CrossRefGoogle Scholar
  22. 22.
    Frenkel K, Chrzan K, Troll W, Teebor GW, Steinberg JJ. Radiation-like modification of bases in DNA exposed to tumor promoter-activated polymorphonuclear leukocytes. Cancer Res 1986: 46: 5533–40.PubMedPubMedCentralGoogle Scholar
  23. 23.
    de Mello Filho AC, Meneghini R. Protection of mammalian cells by o-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species. Biochim Biophys Acta 1985: 847: 82–9.CrossRefGoogle Scholar
  24. 24.
    Jackson J, Schraufstatter IU, Hyslop PA, Vosbeck K, Sauerheber R, Weitzman SA, Cochrane CG. Role of oxidants in DNA damage: Hydroxyl radical mediates the synergistic DNA damaging effects of asbestos and cigarette smoke. J Clin Invest 1987: 80: 1090–1095.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Jackson JH, Gajewski E, Fuciarelli AE, Schraufstatter, IU, Hyslop, PA, Cochrane, CG, Dizdarogler M. Damage to the bases in DNA induced by stimulated neutrophils. J. Clin. Invest. 1988: 84.Google Scholar
  26. 26.
    Ochi T, Cerutti PA. Clastogenic action of hydroperoxy-5, 8,11,13-icosatetranoic acids on the mouse embryo fibroblasts C3H/10 T1/2. Proc Natl Acad Sci 1987: 84: 990–4.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Charles G. Cochrane
    • 1
  • Paul A. Hyslop
    • 1
  • Janis H. Jackson
    • 1
  • Ingrid U. Schraufstatter
    • 1
  1. 1.Department of ImmunologyScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations