Advertisement

Lipid Peroxidation and Cellular Functions: in Vitro Models and Relation to in Vivo Observations

  • J. C. Mazière
  • S. Salmon
  • C. Candide
  • C. Mazière
  • R. Santus
  • J. P. Reyftmann
  • P. Morlière
  • L. Dubertret
Part of the NATO ASI Series book series (NSSA, volume 189)

Summary

The consequences of lipid peroxidation on various cell metabolisms are reviewed with special emphasis on low density lipoprotein catabolism and its relation to atherosclerosis. We also present results concerning an original model developed in our laboratories for the study of the effects of singlet oxygen on lipid peroxidation. In this experimental model, lipoproteins are used as a lipidic environment for porphyrins generating singlet oxygen during their photoactivation. We demonstrate that singlet oxygen attack results in the appearance of fatty acid and cholesterol peroxidation products and in alterations of apolipoproteins, but that apolipoprotein alterations markedly differ between low density and high density lipoproteins. Besides its theoretical interest for the study of lipid oxidation in lipid-protein complexes, this model brings new data concerning the consequences of the photoactivation of anticancer porphyrins which are carried by plasma lipoproteins, mainly LDL and HDL.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kappus, H. Lipid peroxidation: Mechanisms, Analysis, Enzymology, and Biological Relevance. In “Oxidative Stress”, H.Sies ed., Academic Press Inc., London; 273 (1985).Google Scholar
  2. 2.
    Halliwell, B., and Gutteridge, J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem.J., 219: 1 (1984).CrossRefGoogle Scholar
  3. 3.
    Kanofsky, J.R. Singlet oxygen production by lactoperoxidase: halide dependence and quantitation of yield. J.Photochemistry 25: 105 (1984).CrossRefGoogle Scholar
  4. 4.
    Foote, C.S. Photooxidation of Biological Model Compounds. In “Oxygen and Oxy-radicals in Chemistry and Biólogy”, Rodgers, M.A. and Powers, E.L. eds., Academic Press, N.Y.; 425 (1981).Google Scholar
  5. 5.
    Rosen, G.M., and Freeman, B.A. Detection of superoxide generated by endothelial cells. Proc.Natl.Acad.Sci.USA, 81: 7269 (1984).CrossRefGoogle Scholar
  6. 6.
    Reinecke, J.W., Baker, L., Rosen, H., and Chait, A. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. J.Clin.Invest., 77: 757 (1986).CrossRefGoogle Scholar
  7. 7.
    Scully, S.P., Segel, G.B., and Lichtman, M.A. Relationship of superoxide production to cytoplasmic free calcium in human monocytes. J.Clin.Invest., 77, 1349–1356 (1986).CrossRefGoogle Scholar
  8. 8.
    Steinbrecher, U.P. Role of superoxide in endothelial-cell modification of low-density lipoproteins. Biochim. Biophys. Acta, 959, 20–30 (1988).CrossRefGoogle Scholar
  9. 9.
    Heinecke, J.W., Rosen, H., Suzuki, L.A., and Chait, A. The role of sulfur-containing amino acids in superoxide production and modification of Low Density Lipoprotein by arterial smooth muscle cells. J.Biol.Chem. 262: 10098 (1987).PubMedGoogle Scholar
  10. 10.
    Schauenstein, E., Esterbauer, H., and Zollner, H. In “Aldehydes in Biological Systems: Their Natural Occurrence and Biological Activities”, Pion Ldt. London (1977).Google Scholar
  11. 11.
    Benedetti, A., Comporti, M., and Esterbauer, H. Identification of 4hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim.Biophys.Acta 620, 281–296 (1980).CrossRefGoogle Scholar
  12. 12.
    Takatori, T., and Prevett, O.S. Studies on serum lecithin-cholesterol acyl transferase activity in rat: effect of vitamin E deficiency, oxidized dietary fat or intravenous administration of ozonides or hydroperoxides. Lipids, 9, 1018–1023 (1974).PubMedGoogle Scholar
  13. 13.
    Wada, K., Miki, H., Etoh, M., Okuda, F., Kumada, T., and Kusukawa, R. The inhibitory effect of lipid peroxide on the activity of the membrane-bound and the solubilized lipoprotein lipase. Japan.Circ.J., 47, 837–842 (1983).CrossRefGoogle Scholar
  14. 14.
    Dianzani, M.U., Bertone, G.F., Bonelli, G., Canuto, R.A., Feo, F., Gabriel, L., Gravela, E., and Pernigotti, L. Interaction of aldehydes and other derivatives of lipid peroxidation with cell structures. Med.Biol.Environ., 4, 345–365 (1976).Google Scholar
  15. 15.
    Dianzani, M.U. Biological activity of methyl-glyoxal and related activities. In “Submolecular Biology and Cancer” (Ciba Symposium 67), Amsterdam, Excerpta Medica, 245–270 (1979).Google Scholar
  16. 16.
    Esterbauer, H. In “Free Radicals and Liver Injury”, Poli, G., Cheeseman, K.H., Dianzani, M.U., and Slater, T.F. eds., IRL Press Limited, Oxford, England, 29–47 (1985).Google Scholar
  17. 17.
    Reiss, U., Tappel, A.L., and Chio, K.S. DNA-malondialdehyde reaction: formation of fluorescent products. Biochem.Biophys.Res.Commun., 921–926 (1972).Google Scholar
  18. 18.
    Nair, V., Cooper, C.S., Vietti, D.E., and Turner, G.A. The chemistry of lipid peroxidation metabolites: crosslinking reactions of malondialdehyde. Lipids, 21, 6–10 (1986).CrossRefGoogle Scholar
  19. 19.
    Mukai, F.H., and Goldstein, B.D. Mutagenicity of malondialdehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Science, 191, 868–869.CrossRefGoogle Scholar
  20. 20.
    Cajelli, E., Ferraris, A., and Brambilla, G. Mutagenicity of 4hydroxynonenal in V79 Chinese hamster cells. Mut.Res., 190, 169–171 (1987).CrossRefGoogle Scholar
  21. 21.
    Vaca, C.E., Wilhelm, J., and Harms-Ringdahl, M. Interaction of lipid peroxidation products with DNA. A review. Mut.Res., 195, 137–149 (1988).Google Scholar
  22. 22.
    Peng, S.K., and Morin, R.J. Effects on membrane function by cholesterol oxidation derivatives in cultured aortic smooth muscle cells. Artery 14: 85 (1987).PubMedGoogle Scholar
  23. 23.
    Astruc, M., Rousillon, S., Defay, R., Descomp,B., and Crastes de Paulet, A. DNA and cholesterol biosynthesis in synchronized embryonic rat fibroblasts. Biochim.Biophys.Acta 763: 11 (1983).CrossRefGoogle Scholar
  24. 24.
    Neyses, L., Lochern, R., Stimpel, M., Streuli, R., and Vetter, W. Stereospecific modulation of calcium channel in human erythrocytes by cholesterol and its oxidized derivatives. Biochem.J. 227: 105 (1985).CrossRefGoogle Scholar
  25. 25.
    Cheng, K.P., Nagano, H., Luu, B., Ourisson, G., and Beck, J.P. Chemistry and Biochemistry of Chinese Drugs, Part I. Sterol derivatives cytotoxic to hepatoma cells, isolated from the drug Bombyx cum botryte. J.Chem.Res (S) 217: 2501 (1977).Google Scholar
  26. 26.
    Maltese, W.A., Reitz, B.A., and Volpe, J.L. Selective decrease in the viability and the sterol content on proliferating versus quiescent glioma cells exposed to 25-hydroxycholesterol. Cancer Res. 41: 3448 (1981).PubMedGoogle Scholar
  27. 27.
    Peng, S.K., Tham, P., Taylor, C.B., and Mikkelson, B. Cytotoxicity of oxidation derivatives of cholesterol on cultured aortic smooth muscle cells. Am.J.Nutr. 32: 1033 (1979).CrossRefGoogle Scholar
  28. 28.
    Hietter, H., Trifilieff, E., Richert, L., Beck, J.P., Luu, B., and Ourisson, G. Antagonistic action of cholesterol towards the toxicity of hydroxysterols on cultured hepatoma cells. Biochem.Biophys.Res. Commun. 120: 657 (1984).CrossRefGoogle Scholar
  29. 29.
    Imai, H., Werthessen, N.T., Subramanyam, V.S., LeQuesne, P.W., Soloway, A.H., and Kanisawa, M. Angiotoxicity of oxygenated sterols and possible precursors. Science, 207, 651–652 (1980).CrossRefGoogle Scholar
  30. 30.
    Henriksen, T., Mahoney, E.M., and Steinberg, D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc.Natl.Acad.Sci.U.S.A., 78, 6499–6503 (1981).CrossRefGoogle Scholar
  31. 31.
    Goldstein, J.L., Ho, Y.K., Basu, S.K., and Brown, M.S. Binding sites on macrophages that mediates uptake and degradation of acetylated LDL producing massive cholesterol deposition. Proc.Natl.Acad.Sci.U.S.A., 76, 333–337 (1979).CrossRefGoogle Scholar
  32. 32.
    Gerrity, R.G. The role of the monocyte in atherogenesis. I. Transition of blood borne monocytes into foam cells in fatty lesions. Am.J.Pathol., 103, 181–190 (1981).PubMedPubMedCentralGoogle Scholar
  33. 33.
    Parthasarathy, S., Printz, D.J., Boyd, D., Joy, L., and Steinberg, D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis, 6, 505–510 (1986).CrossRefGoogle Scholar
  34. 34.
    Cathcart, M.K., Morel, D.W., and Chisolm, G. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J.Leuk.Biol., 38, 341–350 (1985).CrossRefGoogle Scholar
  35. 35.
    Hiramatsu, K., Rosen, H., Heinecke, J., Wolfbauer, G., and Chait, A. Superoxide initiates oxidation of low density lipoprotein, by human monocytes. Arteriosclerosis, 7, 55–60 (1987).CrossRefGoogle Scholar
  36. 36.
    Morel, D.W., Hessler, J.R., and Chisolm, G.M. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J.Lip.Res., 24, 1070–1076 (1983).Google Scholar
  37. 37.
    Morel, D.W., DiCorleto, P.E., and Chisolm, G. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis, 4, 357–364 (1984).CrossRefGoogle Scholar
  38. 38.
    Henriksen, T., Evensen, S.A., and Carlander, B. Injury to human endothelial cells in culture induced by low density lipoproteins. Scand.J.Clin.Lab.Invest., 39, 361–368 (1979).CrossRefGoogle Scholar
  39. 39.
    Evensen, S.A., Nilsen, E., and Galdal, K.S. Injury to cultured human fibroblasts induced by low density lipoproteins: potentiating and protective factors. Scand.J.Clin.Lab.Invest., 42, 285–290 (1982).CrossRefGoogle Scholar
  40. 40.
    V.W.M. Van Hinsbergh. LDL cytotoxicity. The state of the art. Atherosclerosis, 53, 113–118 (1984).CrossRefGoogle Scholar
  41. 41.
    Hessler, J.R., Robertson, A.L.Jr., and Chisolm, G.M. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis, 32, 213–229 (1979).CrossRefGoogle Scholar
  42. 42.
    Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witzum, J.L., and Steinberg, D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc.Natl.Acad.Sci.U.S.A., 81, 3883–3887 (1984).CrossRefGoogle Scholar
  43. 43.
    Parthasarathy, S., Steinbrecher, U.P., Barnett, J., Witzum, J.L., and Steinberg, D. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proc.Natl.Acad. Sci.U.S.A., 82, 3000–3004 (1985).CrossRefGoogle Scholar
  44. 44.
    Sparrow, C.P., Parthasarathy, S., and Steinberg, D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J.Lip.Res., 29, 745–753.Google Scholar
  45. 45.
    Quinn, M.T., Parthasarathy, S., Fong, L.G., and Steinberg, D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc.Natl.Acad. Sci.U.S.A., 84, 2995–2998.CrossRefGoogle Scholar
  46. 46.
    Quinn, M.T., Parthasarathy, S., and Steinberg, D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc.Natl.Acad.Sci.U.S.A., 85, 2805–2809 (1988).CrossRefGoogle Scholar
  47. 47.
    Curzio, M., Esterbauer, H., Di Mauro, C., Cecchini, G., and Dianzani, M. Chemotactic activity of the lipid peroxidation product 4hydroxynonenal and homologous hydroxyalkenals. Biol.Chem.HoppeSeyler, 367, 321–329 (1986).CrossRefGoogle Scholar
  48. 48.
    Fogelman, A.L., Shechter, I., Seager, J., Hokom, M., Child, J.S., and Edwards, P.A. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc.Natl. Acad. Sci.U.S.A., 77, 2214–2218 (1980).CrossRefGoogle Scholar
  49. 49.
    Haberland, M., Fong, D., and Cheng, L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science, 241, 215–218 (1988).CrossRefGoogle Scholar
  50. 50.
    Yagi, K.,Inagaki, T., Sasaguri, Y., Nakano, R., and Nakashima, T. Formation of lipid-laden cells from cultured aortic smooth muscle cells and macrophages by linoleic acid hydroperoxide and low density lipoprotein. J.Clin.Biochem. Nutr., 3, 87–94 (1987).CrossRefGoogle Scholar
  51. 51.
    Hoff, H.F., Bradley, W.A., Heideman, C.L., Gabatz, J.W., Karagas, M.D., and Gotto, A.M. Characterization of low density lipoprotein-like particle in the human aorta from grossly normal and atherosclerotic regions. Biochim. Biophys.Acta., 573, 361–374 (1979).CrossRefGoogle Scholar
  52. 52.
    Clevidence, B.A., Morton, R.E., West, G., Dusek, D.M., and Hoff, H.F. Cholesterol esterification in macrophages. Stimulation by lipoproteins containing apo-B isolated from human aortas. Arteriosclerosis, 4, 196–207 (1984).PubMedGoogle Scholar
  53. 53.
    Avogaro, P., Bittolo Bon, G., and Cazzolano, G. Presence of modified low density lipoprotein in humans. Arteriosclerosis, 8, 79–87 (1988).CrossRefGoogle Scholar
  54. 54.
    Kita, T., Nagano, Y., Yokode, M., Ishii, K., Kume, N., Ooshima, A., Yoshida, H., and Kawai, C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc.Natl. Acad.Sci.U.S.A., 84, 5928–5931 (1987).CrossRefGoogle Scholar
  55. 55.
    Parthasarathy, S., Young, S.G., Witzum, J.L., Pittman, R.C., and Steinberg, D. Probucol inhibits oxidative modification of low density lipoprotein. J.Clin.Invest., 77, 641–644 (1986).CrossRefGoogle Scholar
  56. 56.
    Reyftmann, J.P., Morlière, P., Goldstein, S., Santus, R., Dubertret, L., and Lagrange, D. Interaction of human serum low density lipoproteins with porphyrins: a spectroscopic and photochemical study. Photochem.Photobiol., 40, 721–729 (1984).CrossRefGoogle Scholar
  57. 57.
    Candide, C., Morlière, P., Mazière, J.C., Goldstein, S., Santus, R., Dubertret, L.,- Reyftmann, J.P., and Polonovski, J. In vitro interaction of the photoactive anticancer porphyrin derivative Photofrin II with low density lipoprotein and its delivery to cultured human fibroblasts. FEBS Lett., 207, 133–138 (1986).Google Scholar
  58. 58.
    Morliére, P., Kohen, E., Reyftmann, J.P., Santus, R., Kohen, C., Mazière, J.C., Goldstein, S., Mangel, W.F., and Dubertret, L. Photosensitization by porphyrin delivered to L cells by human serum low density lipoproteins. A microspectrofluorometr.ic study. Photochem.Photobiol., 46, 183–191 (1987).CrossRefGoogle Scholar
  59. 59.
    Candide, C., Reyftmann, J.P., Santus, R., Mazière, J.C., Morlière, P., and Goldstein, S. Modification of E-amino group of lysines, cholesterol oxidation and oxidized lipid-apoprotein cross-link formation by porphyrin-photosensitized oxidation of human low density lipoproteins. Photochem.Photobiol., 48, 137–146 (1988).CrossRefGoogle Scholar
  60. 60.
    Steinbrecher, U.P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of Apolipoprotein B by lipid peroxide decomposition products. J.Biol.Chem., 262: 3603 (1987).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. C. Mazière
    • 1
  • S. Salmon
    • 1
  • C. Candide
    • 1
  • C. Mazière
    • 1
  • R. Santus
    • 2
  • J. P. Reyftmann
    • 2
  • P. Morlière
    • 3
  • L. Dubertret
    • 3
  1. 1.Laboratoire de BiochimieFaculté de Médicine Saint-AntoineParisFrance
  2. 2.Laboratoire de Physico-Chimie de l’Adaptation BiologiqueMuséum d’Histoire Naturelle de Paris, INSERM U 312ParisFrance
  3. 3.Laboratoire de Recherche DermatologiqueINSERM U 312, Hôpital Henri MondorCréteilFrance

Personalised recommendations