Skip to main content

Lipid Peroxidation and Cellular Functions: in Vitro Models and Relation to in Vivo Observations

  • Chapter
Free Radicals, Lipoproteins, and Membrane Lipids

Part of the book series: NATO ASI Series ((NSSA,volume 189))

Summary

The consequences of lipid peroxidation on various cell metabolisms are reviewed with special emphasis on low density lipoprotein catabolism and its relation to atherosclerosis. We also present results concerning an original model developed in our laboratories for the study of the effects of singlet oxygen on lipid peroxidation. In this experimental model, lipoproteins are used as a lipidic environment for porphyrins generating singlet oxygen during their photoactivation. We demonstrate that singlet oxygen attack results in the appearance of fatty acid and cholesterol peroxidation products and in alterations of apolipoproteins, but that apolipoprotein alterations markedly differ between low density and high density lipoproteins. Besides its theoretical interest for the study of lipid oxidation in lipid-protein complexes, this model brings new data concerning the consequences of the photoactivation of anticancer porphyrins which are carried by plasma lipoproteins, mainly LDL and HDL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kappus, H. Lipid peroxidation: Mechanisms, Analysis, Enzymology, and Biological Relevance. In “Oxidative Stress”, H.Sies ed., Academic Press Inc., London; 273 (1985).

    Google Scholar 

  2. Halliwell, B., and Gutteridge, J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem.J., 219: 1 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanofsky, J.R. Singlet oxygen production by lactoperoxidase: halide dependence and quantitation of yield. J.Photochemistry 25: 105 (1984).

    Article  CAS  Google Scholar 

  4. Foote, C.S. Photooxidation of Biological Model Compounds. In “Oxygen and Oxy-radicals in Chemistry and Biólogy”, Rodgers, M.A. and Powers, E.L. eds., Academic Press, N.Y.; 425 (1981).

    Google Scholar 

  5. Rosen, G.M., and Freeman, B.A. Detection of superoxide generated by endothelial cells. Proc.Natl.Acad.Sci.USA, 81: 7269 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Reinecke, J.W., Baker, L., Rosen, H., and Chait, A. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. J.Clin.Invest., 77: 757 (1986).

    Article  Google Scholar 

  7. Scully, S.P., Segel, G.B., and Lichtman, M.A. Relationship of superoxide production to cytoplasmic free calcium in human monocytes. J.Clin.Invest., 77, 1349–1356 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steinbrecher, U.P. Role of superoxide in endothelial-cell modification of low-density lipoproteins. Biochim. Biophys. Acta, 959, 20–30 (1988).

    Article  CAS  Google Scholar 

  9. Heinecke, J.W., Rosen, H., Suzuki, L.A., and Chait, A. The role of sulfur-containing amino acids in superoxide production and modification of Low Density Lipoprotein by arterial smooth muscle cells. J.Biol.Chem. 262: 10098 (1987).

    PubMed  CAS  Google Scholar 

  10. Schauenstein, E., Esterbauer, H., and Zollner, H. In “Aldehydes in Biological Systems: Their Natural Occurrence and Biological Activities”, Pion Ldt. London (1977).

    Google Scholar 

  11. Benedetti, A., Comporti, M., and Esterbauer, H. Identification of 4hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim.Biophys.Acta 620, 281–296 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Takatori, T., and Prevett, O.S. Studies on serum lecithin-cholesterol acyl transferase activity in rat: effect of vitamin E deficiency, oxidized dietary fat or intravenous administration of ozonides or hydroperoxides. Lipids, 9, 1018–1023 (1974).

    PubMed  CAS  Google Scholar 

  13. Wada, K., Miki, H., Etoh, M., Okuda, F., Kumada, T., and Kusukawa, R. The inhibitory effect of lipid peroxide on the activity of the membrane-bound and the solubilized lipoprotein lipase. Japan.Circ.J., 47, 837–842 (1983).

    Article  CAS  Google Scholar 

  14. Dianzani, M.U., Bertone, G.F., Bonelli, G., Canuto, R.A., Feo, F., Gabriel, L., Gravela, E., and Pernigotti, L. Interaction of aldehydes and other derivatives of lipid peroxidation with cell structures. Med.Biol.Environ., 4, 345–365 (1976).

    CAS  Google Scholar 

  15. Dianzani, M.U. Biological activity of methyl-glyoxal and related activities. In “Submolecular Biology and Cancer” (Ciba Symposium 67), Amsterdam, Excerpta Medica, 245–270 (1979).

    Google Scholar 

  16. Esterbauer, H. In “Free Radicals and Liver Injury”, Poli, G., Cheeseman, K.H., Dianzani, M.U., and Slater, T.F. eds., IRL Press Limited, Oxford, England, 29–47 (1985).

    Google Scholar 

  17. Reiss, U., Tappel, A.L., and Chio, K.S. DNA-malondialdehyde reaction: formation of fluorescent products. Biochem.Biophys.Res.Commun., 921–926 (1972).

    Google Scholar 

  18. Nair, V., Cooper, C.S., Vietti, D.E., and Turner, G.A. The chemistry of lipid peroxidation metabolites: crosslinking reactions of malondialdehyde. Lipids, 21, 6–10 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Mukai, F.H., and Goldstein, B.D. Mutagenicity of malondialdehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Science, 191, 868–869.

    Article  Google Scholar 

  20. Cajelli, E., Ferraris, A., and Brambilla, G. Mutagenicity of 4hydroxynonenal in V79 Chinese hamster cells. Mut.Res., 190, 169–171 (1987).

    Article  CAS  Google Scholar 

  21. Vaca, C.E., Wilhelm, J., and Harms-Ringdahl, M. Interaction of lipid peroxidation products with DNA. A review. Mut.Res., 195, 137–149 (1988).

    CAS  Google Scholar 

  22. Peng, S.K., and Morin, R.J. Effects on membrane function by cholesterol oxidation derivatives in cultured aortic smooth muscle cells. Artery 14: 85 (1987).

    PubMed  CAS  Google Scholar 

  23. Astruc, M., Rousillon, S., Defay, R., Descomp,B., and Crastes de Paulet, A. DNA and cholesterol biosynthesis in synchronized embryonic rat fibroblasts. Biochim.Biophys.Acta 763: 11 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Neyses, L., Lochern, R., Stimpel, M., Streuli, R., and Vetter, W. Stereospecific modulation of calcium channel in human erythrocytes by cholesterol and its oxidized derivatives. Biochem.J. 227: 105 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, K.P., Nagano, H., Luu, B., Ourisson, G., and Beck, J.P. Chemistry and Biochemistry of Chinese Drugs, Part I. Sterol derivatives cytotoxic to hepatoma cells, isolated from the drug Bombyx cum botryte. J.Chem.Res (S) 217: 2501 (1977).

    Google Scholar 

  26. Maltese, W.A., Reitz, B.A., and Volpe, J.L. Selective decrease in the viability and the sterol content on proliferating versus quiescent glioma cells exposed to 25-hydroxycholesterol. Cancer Res. 41: 3448 (1981).

    PubMed  CAS  Google Scholar 

  27. Peng, S.K., Tham, P., Taylor, C.B., and Mikkelson, B. Cytotoxicity of oxidation derivatives of cholesterol on cultured aortic smooth muscle cells. Am.J.Nutr. 32: 1033 (1979).

    Article  CAS  Google Scholar 

  28. Hietter, H., Trifilieff, E., Richert, L., Beck, J.P., Luu, B., and Ourisson, G. Antagonistic action of cholesterol towards the toxicity of hydroxysterols on cultured hepatoma cells. Biochem.Biophys.Res. Commun. 120: 657 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Imai, H., Werthessen, N.T., Subramanyam, V.S., LeQuesne, P.W., Soloway, A.H., and Kanisawa, M. Angiotoxicity of oxygenated sterols and possible precursors. Science, 207, 651–652 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Henriksen, T., Mahoney, E.M., and Steinberg, D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc.Natl.Acad.Sci.U.S.A., 78, 6499–6503 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldstein, J.L., Ho, Y.K., Basu, S.K., and Brown, M.S. Binding sites on macrophages that mediates uptake and degradation of acetylated LDL producing massive cholesterol deposition. Proc.Natl.Acad.Sci.U.S.A., 76, 333–337 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gerrity, R.G. The role of the monocyte in atherogenesis. I. Transition of blood borne monocytes into foam cells in fatty lesions. Am.J.Pathol., 103, 181–190 (1981).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Parthasarathy, S., Printz, D.J., Boyd, D., Joy, L., and Steinberg, D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis, 6, 505–510 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Cathcart, M.K., Morel, D.W., and Chisolm, G. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J.Leuk.Biol., 38, 341–350 (1985).

    Article  CAS  Google Scholar 

  35. Hiramatsu, K., Rosen, H., Heinecke, J., Wolfbauer, G., and Chait, A. Superoxide initiates oxidation of low density lipoprotein, by human monocytes. Arteriosclerosis, 7, 55–60 (1987).

    Article  CAS  PubMed  Google Scholar 

  36. Morel, D.W., Hessler, J.R., and Chisolm, G.M. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J.Lip.Res., 24, 1070–1076 (1983).

    CAS  Google Scholar 

  37. Morel, D.W., DiCorleto, P.E., and Chisolm, G. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis, 4, 357–364 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Henriksen, T., Evensen, S.A., and Carlander, B. Injury to human endothelial cells in culture induced by low density lipoproteins. Scand.J.Clin.Lab.Invest., 39, 361–368 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. Evensen, S.A., Nilsen, E., and Galdal, K.S. Injury to cultured human fibroblasts induced by low density lipoproteins: potentiating and protective factors. Scand.J.Clin.Lab.Invest., 42, 285–290 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. V.W.M. Van Hinsbergh. LDL cytotoxicity. The state of the art. Atherosclerosis, 53, 113–118 (1984).

    Article  PubMed  Google Scholar 

  41. Hessler, J.R., Robertson, A.L.Jr., and Chisolm, G.M. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis, 32, 213–229 (1979).

    Article  CAS  PubMed  Google Scholar 

  42. Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witzum, J.L., and Steinberg, D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc.Natl.Acad.Sci.U.S.A., 81, 3883–3887 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parthasarathy, S., Steinbrecher, U.P., Barnett, J., Witzum, J.L., and Steinberg, D. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proc.Natl.Acad. Sci.U.S.A., 82, 3000–3004 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sparrow, C.P., Parthasarathy, S., and Steinberg, D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J.Lip.Res., 29, 745–753.

    Google Scholar 

  45. Quinn, M.T., Parthasarathy, S., Fong, L.G., and Steinberg, D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc.Natl.Acad. Sci.U.S.A., 84, 2995–2998.

    Article  CAS  Google Scholar 

  46. Quinn, M.T., Parthasarathy, S., and Steinberg, D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc.Natl.Acad.Sci.U.S.A., 85, 2805–2809 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Curzio, M., Esterbauer, H., Di Mauro, C., Cecchini, G., and Dianzani, M. Chemotactic activity of the lipid peroxidation product 4hydroxynonenal and homologous hydroxyalkenals. Biol.Chem.HoppeSeyler, 367, 321–329 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Fogelman, A.L., Shechter, I., Seager, J., Hokom, M., Child, J.S., and Edwards, P.A. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc.Natl. Acad. Sci.U.S.A., 77, 2214–2218 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haberland, M., Fong, D., and Cheng, L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science, 241, 215–218 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Yagi, K.,Inagaki, T., Sasaguri, Y., Nakano, R., and Nakashima, T. Formation of lipid-laden cells from cultured aortic smooth muscle cells and macrophages by linoleic acid hydroperoxide and low density lipoprotein. J.Clin.Biochem. Nutr., 3, 87–94 (1987).

    Article  CAS  Google Scholar 

  51. Hoff, H.F., Bradley, W.A., Heideman, C.L., Gabatz, J.W., Karagas, M.D., and Gotto, A.M. Characterization of low density lipoprotein-like particle in the human aorta from grossly normal and atherosclerotic regions. Biochim. Biophys.Acta., 573, 361–374 (1979).

    Article  CAS  PubMed  Google Scholar 

  52. Clevidence, B.A., Morton, R.E., West, G., Dusek, D.M., and Hoff, H.F. Cholesterol esterification in macrophages. Stimulation by lipoproteins containing apo-B isolated from human aortas. Arteriosclerosis, 4, 196–207 (1984).

    PubMed  CAS  Google Scholar 

  53. Avogaro, P., Bittolo Bon, G., and Cazzolano, G. Presence of modified low density lipoprotein in humans. Arteriosclerosis, 8, 79–87 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Kita, T., Nagano, Y., Yokode, M., Ishii, K., Kume, N., Ooshima, A., Yoshida, H., and Kawai, C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc.Natl. Acad.Sci.U.S.A., 84, 5928–5931 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parthasarathy, S., Young, S.G., Witzum, J.L., Pittman, R.C., and Steinberg, D. Probucol inhibits oxidative modification of low density lipoprotein. J.Clin.Invest., 77, 641–644 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reyftmann, J.P., Morlière, P., Goldstein, S., Santus, R., Dubertret, L., and Lagrange, D. Interaction of human serum low density lipoproteins with porphyrins: a spectroscopic and photochemical study. Photochem.Photobiol., 40, 721–729 (1984).

    Article  CAS  PubMed  Google Scholar 

  57. Candide, C., Morlière, P., Mazière, J.C., Goldstein, S., Santus, R., Dubertret, L.,- Reyftmann, J.P., and Polonovski, J. In vitro interaction of the photoactive anticancer porphyrin derivative Photofrin II with low density lipoprotein and its delivery to cultured human fibroblasts. FEBS Lett., 207, 133–138 (1986).

    Google Scholar 

  58. Morliére, P., Kohen, E., Reyftmann, J.P., Santus, R., Kohen, C., Mazière, J.C., Goldstein, S., Mangel, W.F., and Dubertret, L. Photosensitization by porphyrin delivered to L cells by human serum low density lipoproteins. A microspectrofluorometr.ic study. Photochem.Photobiol., 46, 183–191 (1987).

    Article  PubMed  Google Scholar 

  59. Candide, C., Reyftmann, J.P., Santus, R., Mazière, J.C., Morlière, P., and Goldstein, S. Modification of E-amino group of lysines, cholesterol oxidation and oxidized lipid-apoprotein cross-link formation by porphyrin-photosensitized oxidation of human low density lipoproteins. Photochem.Photobiol., 48, 137–146 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Steinbrecher, U.P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of Apolipoprotein B by lipid peroxide decomposition products. J.Biol.Chem., 262: 3603 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Mazière, J.C. et al. (1990). Lipid Peroxidation and Cellular Functions: in Vitro Models and Relation to in Vivo Observations. In: de Paulet, A.C., Douste-Blazy, L., Paoletti, R. (eds) Free Radicals, Lipoproteins, and Membrane Lipids. NATO ASI Series, vol 189. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7427-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7427-5_31

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7429-9

  • Online ISBN: 978-1-4684-7427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics