Advertisement

Triggering and Regulation of the Free Radical Production by Phagocytes

  • P. Bellavite
  • M. C. Serra
  • F. Bazzoni
  • S. Miron
  • S. Dusi
Part of the NATO ASI Series book series (NSSA, volume 189)

Abstract

Phagocytic cells (neutrophils, eosinophils, monocytes and macrophages) are capable of converting oxygen into potentially toxic species such as superoxide anion, hydrogen peroxide and hydroxyl radical. This peculiar metabolic pathway, which is called respiratory burst, is turned on when a membrane — bound enzyme, the NADPH oxidase, is activated. Other reactions, such as those of the glutathione cycle and of the hexose monophosphate pathway, are secondary to the triggering of NADPH oxidase, having the function of continuouslsupply of reduced NADPH and of intracellular detoxification.1–3

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Klebanoff and R. A. Clark, “The Neutrophil: Function and Clinical Disorders“, North Holland Publ. Comp.Amsterdam (1978).Google Scholar
  2. 2.
    B. M. Babior, R. S. Kipnes and J. T. Curnutte, Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent, J. Clin. Invest. 52: 7414 (1973).CrossRefGoogle Scholar
  3. 3.
    F. Rossi, The 02 forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function, Biochim. Biophys. Acta 853: 65 (1986).Google Scholar
  4. 4.
    P. Bellavite, O. T. G. Jones, A.R. Cross, E. Papini and F. Rossi, Composition of partially purified NADPH oxidase from pig neutrophils, Biochem. J. 223: 639 (1984).CrossRefGoogle Scholar
  5. 5.
    G. Berton, E. Papini, M. Cassatella, P. Bellavite and F. Rossi,Partial purification of the superoxide-generating system of macrophages. Possible association of the NADPH oxidase activity with a low potential cytochrome b, Biochim. Biophys. Acta 810: 164 (1985).Google Scholar
  6. 6.
    J. Doussiere and P. V. Vignais, Purification and properties of 02 -generating oxidase from bovine polymorphonuclear neutrophils, Biochemistry 24: 7231 (1985).Google Scholar
  7. 7.
    G. A. Glass, D. M. DeLisle, P. DeTogni, T. G. Gabig, B. H. Magee, M. Markert and B. M. Babior, The respiratory burst oxidase of human neutrophils. Further studies of the purified enzyme, J. Biol. Chem. 261: 13247 (1986).Google Scholar
  8. 8.
    T. G. Gabig and B. M. Babior, The 02 forming oxidase responsible for the respiratory burst in human neutrophils. Properties of the solubilized enzyme, J. Biol. Chem. 254: 9070 (1979).PubMedGoogle Scholar
  9. 9.
    M. L. Karnovsky, Comparative aspects of the production of oxygen radicals by phagocytic cells, and aspects of other effector substances, Int. J. Tiss. Reac. 8: 91 (1986).Google Scholar
  10. 10.
    R. B.Jr. Johnston, Oxygen metabolism and the microbicidal activity of macrophages, Fed. Proc. 37: 2759 (1978).Google Scholar
  11. 11.
    C. F. Nathan, Regulation of macrophage oxidative metabolism and parasitic activity, In:“Mononuclear Phagocytes. Characteristics, Physiology and Function”, R. Van Furth ed., Martinus Niijhoff Publishers, Dordrecht, 411 (1985).Google Scholar
  12. 12.
    P. M. Henson and Z. G. Oades, Stimulation of human neutrophils by soluble and insoluble immunoglobulin aggregates. Secretion of granule constituents and increased oxidation of glucose, J. Clin. Invest. 56: 1053 (1975).CrossRefGoogle Scholar
  13. 13.
    K. Kakinuma, Effects of fatty acids on the oxidative metabolism of leukocytes, Biochim. Biophys. Acta 348: 76 (1974).Google Scholar
  14. 14.
    T. Yamaguchi, M. Kaneda and K. Kakinuma, Effect of saturated and unsaturated fatty acids on the oxidative metabolism of human neutrophils. The role of calcium ion in the extracellular medium, Biochim. Biophys. Acta 861: 440 (1986).CrossRefGoogle Scholar
  15. 15.
    H. Sumimoto, K. Takeshige and S. Minakami, Superoxide production of human polymorphonuclear leukocytes stimulated by leukotriene B4, Biochim. Biophy. s. Acta 803: 271 (1984).Google Scholar
  16. 16.
    I. Fujita, K. Irita, K. Takeshige and S. Minakami, Diacylglycerol, 1-oleoyl-2-acetyl-glycerol, stimulates superoxide generation from human neutrophils, Biochem. Biophys. Res. Commun. 120: 318 (1984).CrossRefGoogle Scholar
  17. 17.
    H. P.Hartung, M.J. Parnham, J. Winkelman, W. Englberger and U. Hadding, Platelet activating factor (PAF) induces the oxidative burst in macrophages, Int. J. Immunopharmacol. 5: 115 (1983).CrossRefGoogle Scholar
  18. 18.
    H. P. Hartung, R. G. Kladetzky, B. Melnik and M. Hennerici, Stimulation of the scavenger receptor on monocytes-macrophages evokes release of arachidonic acid metabolites and reduced oxygen species, Lab. Invest. 55: 209 (1986).Google Scholar
  19. 19.
    T. Chiba, Y. Nagai and K. Kakinuma, Cerebroside sulfuric ester (sulfatide) induces oxygen radical generation in guinea-pig leukocytes, Biochem. Biophys. Acta 930: 10 (1987).CrossRefGoogle Scholar
  20. 20.
    D. Romeo, G. Zabucchi and F. Rossi, Reversible metabolic stimulation of polymorphonuclear leukocytes and macrophages by concanavalin A, Nature 243: 111 (1973).Google Scholar
  21. 21.
    F. Rossi, M. Zatti, P. Patriarca and R. Cramer, Stimulation of the respiration of polymorphonuclear leucocytes by antileucocyte antibodies, Experientia 26: 491 (1970).Google Scholar
  22. 22.
    G. Berton, H. Rosen, R. A. B. Ezekowitz, P. Bellavite, M. C. Serra, F. Rossi and S. Gordon, Monoclonal antibodies to a particulate superoxide-forming system stimulate a respiratory burst in intact guinea pig neutrophils, Proc. Natl. Acad. Sci. USA 83: 4002 (1986).CrossRefGoogle Scholar
  23. 23.
    F. Tedesco, S. Trani, M.R. Soranzo and P. Patriarca, Stimulation of glucose oxidation in human polymorphonuclear leucocytes by C3-sepharose and soluble C567, FEBS Lett. 51: 232 (1975).PubMedGoogle Scholar
  24. R. Gennaro+T. Pozzan and D. Romeo, Monitoring of cytosolic free Ca in C5a-stimulated neutrophils: Loss of receptor-modulated Ca + stores and Ca 2+ uptake in granule-free cytoplasts, Proc. Natl. Acad. Sci. USA 81: 1416 (1984).CrossRefGoogle Scholar
  25. M. Tsujimoto, S. Yokota, J. Vilcek and G. Weissmann, Tumor necrosis factor provokes superoxide anion generation from neutrophils, Biochem. Biophys. Res. Commun. 137: 1094 (1986).CrossRefGoogle Scholar
  26. 26.
    P. Patriarca, M. Zatti, R. Cramer and F. Rossi, Stimulation of the respiration of polymorphonuclear leucocytes by phospholipase C, Life Sci. 9: 841 (1970).Google Scholar
  27. L. C. McPhail and R. Snyderman, Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemoattractants and othe soluble stimuli. Evidence that the same oxidase is activated by different transductional mechanisms, J. Clin. Invest. 72: 192 (1983).CrossRefGoogle Scholar
  28. 28.
    M. C. Serra, F. Bazzoni, V. DellaBianca, M. Grzeskowiak and F. Rossi, Activation of human neutrophiuls by substance P: Effect on oxidative metabolism, exocytosis, cytosolic Ca concentration and inositol phosphates formation, J. Immunology 141: 2118 (1988).Google Scholar
  29. E. L. Becker, M. Sigman and J. M. Oliver, Superoxide production induced in rabbit polymorphonuclear leukocytes by synthetic chemotactic peptides and A23187, Am. J. Pathol. 95: 81 (1979).Google Scholar
  30. C. Salerno, Urate crystal-induced superoxide radical production by human neutrophils, Adv. Exp. Med. Biol. 165: 184 (1984).Google Scholar
  31. J. T. Curnutte, B. M. Babior and M. L. Karnovsky, Fluoride-mediated activation of the respiratory burst in human neutrophils. A reversible process, J. Clin. Invest. 63: 637 (1979).CrossRefGoogle Scholar
  32. 32.
    F. Rossi, V. Della Bianca and A. Davoli, A new way for inducing a respiratory burst in guinea pig neutrophils. Change in the Na, K concentration of the medium, FEBS Lett. 132: 273 (1981).CrossRefGoogle Scholar
  33. R. C. Graham, M. J. Karnovsky, A. W. Shafer, E. A. Glass and M. L. Karnovsky, Metabolic and morphological observations on the effect of surface-active agents on leukocytes, J. Cell. Biol. 32: 629 (1967).CrossRefGoogle Scholar
  34. F. Rossi and M. Zatti, Mechanism of the respiratory stimulation in saponine-treated leukocytes. The KCN insensitive oxidation of NADPH, Biochim. Biophys. Acta 153: 296 (1968).Google Scholar
  35. A. Aviram and I. Aviram, Activation of guinea-pig and bovine neutrophil NADPH oxidase by N,N’ - dicyclohexylcarbodiimide, Biochim. Biophys. Acta 844: 224 (1985).Google Scholar
  36. 36.
    L. C. McPhail and R. Snyderman Mechanisms of regulating the respiratory burst in leukocytes, In:“ Regulation of Leukocyte Function” R. Snyderman, ed., Plenum Press, New York 247 (1984).Google Scholar
  37. 37.
    A. I. Tauber, Protein kinase C and the activation of the human neutrophil NADPH-oxidase, Blood 69: 711 (1987).Google Scholar
  38. P. Bellavite, The superoxide-forming enzymatic system of phagocytes, Free Radical Biol. Med. 4: 225 (1988).CrossRefGoogle Scholar
  39. R. R. Sandborg and J. E. Smolen, Biology of disease. Early biochemical events in leukocyte activation, Lab. Invest. 59: 300 (1988).Google Scholar
  40. 40.
    A.W. Segal, P.C. Heyworth, S. Cockroft and N.M. BarrowmanGoogle Scholar
  41. Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphory-Google Scholar
  42. late a Mr-44,000 protein, Nature 316: 547 (1985).CrossRefGoogle Scholar
  43. T. Hayakawa, K. Suzuki, S. Suzuki, P. C. Andrews and B. M. Babior, A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence for studies with cells from patients with chronic granulomatous disease, J. Biol. Chem. 261: 9109 (1986).Google Scholar
  44. I. M. Kramer, A. J. Verhoeven, R. vanderBend, R.S. Weening and D. Roos, Purified protein kinase C phosphorylates a 47-kDa Protein in control neutrophil cytoplasts but not in neutrophil cytoplasts from patients with the autosomal form of chronic granulomatous disease, J. Biol. Chem. 263: 2352 (1988).Google Scholar
  45. 43.
    R. C. Garcia and A.W. Segal, Phosphorylation of the subunitsGoogle Scholar
  46. of cytochrome b-245 upon triggering of the respiratory burst of human neutrophils and macrophages, Biochem. J. 252: 901 (1988).CrossRefGoogle Scholar
  47. N. Okamura, J. T. Curnutte, R. L. Roberts and B. M. Babior, Relationship of protein phosphorylation to the activation of the respiratory burst in human neutrophils.Defects of the phosphorylation of a group of Closely related 48-kDa proteins in two forms of chonic granulomatous disease,J. Biol. Chem. 263:677(1988).Google Scholar
  48. 45.
    E.Papini, M. Grzeskowiak, P.Bellavite and F. Rossi, Protein kinase C phosphorylates a component of NADPH oxidase of neutrophils, FEBS let. 190: 204 (1985).Google Scholar
  49. 46.
    P. Bellavite, S.Dusi and M. A. Cassatella, Studies on the nature and activation of 02 –forming NADPH oxidase of leukocytes II. Relationships between phosphorylation of a component of the enzyme and oxidase activity, Free Rad. Res. Commun.4:83(1987)Google Scholar
  50. Bromberg and E. Pick, Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages, Cell. Immunol. 88: 213(1984).CrossRefGoogle Scholar
  51. 48.
    A. Heyneman and R. E. Vercauteren, Activation of a NADPH oxidase from horse polymorphonuclear leukocytes in aGoogle Scholar
  52. I. Maridonneau-Parini and A. I. Tauber, Activation of NADPH oxidase by arachidonic acid involves phospholipase A2 in intact human neutrophils but not in the cell-free system, Biochem. Biophys. Res. Commun. 138: 1099 (1986).CrossRefGoogle Scholar
  53. 50.
    J. T. Curnutte, Activation of human neutrophil nicotinamide(triphosphopyridine nucleotide, reduced) oxidase byGoogle Scholar
  54. arachidonic acid in a cell-free system, J. Clin. Invest. 75: 1740 (1985).CrossRefGoogle Scholar
  55. L. C. McPhail, P. S. Shirley, C. C. Clayton and R. Snyderman, Activation of the respiratory burst enzyme from human neutrophils ina cell-free system. Evidence for a soluble cofactor, J. Clin. Invest. 75: 1735(1985).CrossRefGoogle Scholar
  56. 52.
    R. Seifert, W. Rosenthal and G. Schultz, Guanine nucleotides stimulate NADPH oxidase in membranes of human neutrophils, FEBS Lett. 205: 161 (1986).PubMedGoogle Scholar
  57. 54.
    P. Bellavite, F. Corso, S. Dusi, M. Grzeskowiak, V. Della Bianca and F. Rossi, Activation of a NADPH-Google Scholar
  58. dependent superoxide production in plasma-membrane extracts of pig neutrophils by phosphatidic acid, J. Biol. Chem. 263: 8210 (1988).Google Scholar
  59. 55.
    E. Ligeti, J. Doussiere and P. V. Vignais, Activation of the 02 -generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzableGoogle Scholar
  60. analogues of GTP, Biochemistry 27: 193 (1988).Google Scholar
  61. I. Fujita, K. Takeshige and S. Minakami, Characterization of the NADPH-dependent superoxide production activated by sodium dodecyl sulfate in a cell-free system of pig neutrophils, Biochim. Bio2h1s. Acta 931: 41 (1987).CrossRefGoogle Scholar
  62. F. Rossi, M. Grzeskowiak and V. Della Bianca, Double stimulation with FMLP and Con A restores the activation of the respiratory burst but not of the phosphoinositide turnover in Ca 2+-depleted human neutrophils. A further example of dissociation between stimulation of the NADPH oxidase and phosphoinositide turnover, Biochem. Bio2hys. Res. Commun. 140: 1 (1986).Google Scholar
  63. M Grzeskowiak, V. Della Bianca, M. Cassatella and F. Rossi, Complete dissociation between the activation of phosphoinositide turnover and of NADPH oxidase by Formyl-methionyl-leucyl-phenylanine in human neutropils depleted of Ca2+ and primed by subtreshold doses of phorbol myristate acetate, Biochem. Biophys. Res. Commun. 135:785(1986).Google Scholar
  64. 59.
    F. Rossi, V. Della Bianca, M. Grzeskowiak and F. Bazzoni, Studies on molecular regulation of Phagocytosis in neutrophils. Con A-mediated ingestion and associated turnover, rise in Ca2+ i and arachidonic acid release. J. Immunol.(in press)Google Scholar
  65. J. A. Badwey, J. T. Curnutte, J. M. Robinson, C. B. Berde, M. J. Karnovsky and M. L. Karnovsky, Effects of free fatty acids on release of superoxide and on change of Biol. Chem. 259: 7870 (1984).Google Scholar
  66. 62.
    L. Simkowitz, J. P. Atkinson and I. Spilberg, Stimulus-Google Scholar
  67. specific deactivation of chemotactic factor-inducedGoogle Scholar
  68. cyclic AMP response and superoxide generation by human neutrophils, J. Clin. Invest. 66: 736 (1980).CrossRefGoogle Scholar
  69. 63.
    L. A. Sklar, A. J. Jesaitis, R. G. Painter and C. G.Google Scholar
  70. Cochrane, The kinetics of neutrophil activation. TheGoogle Scholar
  71. response to chemotactic peptides depends upon whetherGoogle Scholar
  72. ligand-receptor interaction is rate-limiting, J. Biol.Chem. 256: 9909 (1981).Google Scholar
  73. G. Berton and S. Gordon, Desensitization of macrophages to stimuli which induce secretion of superoxide anion. Down-regulation of receptors for phorbol myristate acetate, Eur. J. Immunol. 13: 620 (1983).CrossRefGoogle Scholar
  74. 65.
    E. A. Valletta and G. Berton, Desensitization of macrophage oxygen metabolism on immobilized ligand: different effect of immunoglobulin G and complement. J.Immunology 138: 4366 (1987).Google Scholar
  75. S. Tsunawaki and C. F. Nathan, Macrophage deactivation. Altered kinetic properties of superoxide-producing enzyme after exposure to tumor cell-conditioned medium, J. Ex2. Med. 164: 1319 (1986).CrossRefGoogle Scholar
  76. E. Wilson, S. M. Laster, L. R. Gooding and J. D. Lambeth, Platelet-derived growth factor stimulates phagocytosis and blocks agonist-induced activation of the neutrophil oxidative burst: a possible cellular mechanism to protect against oxygen radical damage, Proc. Natl. Acad. Sci. U.S.A. 84: 2213 (1987).CrossRefGoogle Scholar
  77. 68.
    M. W. Verghese, C. D. Smith, L. A. Charles, L. Jakoi and R. Snyderman, A guanine nucleotide regulatory p5otein controls polyphosphoinositide metabolism, CaGoogle Scholar
  78. mobilization, and cellular responses to chemoattractants in human monocytes, J. Immunol. 137: 271 (1986).Google Scholar
  79. R E. Duque, Inhibition of neutrophil activation by p-bromophenacyl bromide and its effects on phospholipase A2, Br. J. Pharmacol. 88: 463 (1986).CrossRefGoogle Scholar
  80. 70.
    A I. Tauber and E. R. Simons, Dissociation of human neutrophil membrane depolarization, respiratory burst stimulation and phospholipid metabolism by quinacrine, FEBS Lett. 156: 161 (1983).PubMedGoogle Scholar
  81. 71.
    I M. Goldstein, D. Roos, G. Weissmann and H. B. Kaplan, Influence of corticosteroids on human polymorphonuclear leukocyte function in vitro: reduction of lysosomal enzyme release and superoxide production, Inflammation 1: 305 (1976).CrossRefGoogle Scholar
  82. 72.
    J. C. Gay, J. N. Lukens and D. K. English, Differential inhibition of neutrophil superoxide generation by nonsteroidal antiinflammatory drugs, Inflammation 8: 209 (1984).PubMedGoogle Scholar
  83. J 0. Minta and M. D. Williams, Interactions of antirheumatic drugs with the superoxide generation system of activated human polymorphonuclear leukocytes, J. Rheumatol. 13: 498 (1986).Google Scholar
  84. R J. Gryglewsky, A. Szczeklik and M. Wandzilak, The effect of six prostaglandins, prostacyclin and iloprost on generation of superoxide anions by human polymorphonuclear leukocytes stimulated by zymosan or formyl-methionyl-leucyl-phenylalanine, Biochem. Pharmacol. 36: 4209 (1987).Google Scholar
  85. P DeTogni, G. Cabrini and F. Di Virgilio, Cyclic AMP inhibition of fMet-Leu-Phe-dependent metabolic responses in human neutrophils is not due to its effects on cytosolic Ca, Biochem. J. 224: 629 (1984).CrossRefGoogle Scholar
  86. B. N. Cronstein, S. B. Kramer, G. Weissmann and R. Hirshhorn, Adenosine: A physiological modulator of superoxide anion generation by human neutrophils, J. Ex2. Med. 158: 1160 (1983).CrossRefGoogle Scholar
  87. 77.
    P. A. Ward, T. W. Cunningham, K. K. McCulloch and K. J. Johnson, Regulatory effects of adenosine and adenine nucleotides on oxygen radical responses of neutrophils, Lab. Invest. 58: 438 (1988).Google Scholar
  88. T. Matsumoto, K. Takeshige and S. Minakami, Inhibition of phagocytotic metabolic changes of leukocytes by an intracellular calcium antagonist 8-(N,N-diethylamine)octyl-3,4,5-trimethoxybenzoate, Biochem. Biophys. Res. Commun, 88: 974 (1979).Google Scholar
  89. V Della Bianca, M. Grzeskowiak, P. DeTogni, M. Cassatella, and F. Rossi, Inhibition by verapamil of neutrophil responses to formyl-methionyl-leucyl-phenylalaniie and phorbol myristate acetate. Mechanism involving Ca changes, cAMP and protein kinase C, Biochim. Bio2ys_ Acta 845: 223 (1985).Google Scholar
  90. Y Azuma, T. Tokunaga, Y. Takeda, T. Ogawa and N. Takagi, The effect of calcium antagonists on the activation of guinea pig neutrophils, Japan J. Pharmacol. 42: 243 (1986).CrossRefGoogle Scholar
  91. J M. Robinson, J. A. Badwey, M. L. Karnovsky and M. J. Karnovsky, Release of superoxide and change in morphology by neutrophils in response to phorbol esters: Antagonism by inhibitors of calcium-binding proteins, J. Cell. Biol. 101: 1052 (1985).CrossRefGoogle Scholar
  92. K Takeshige and S. Minakami, Involvement of calmodulin in phagocytotic respiratory burst of leukocytes, Biochem. Biophys. Res. Commun. 99: 484 (1981).CrossRefGoogle Scholar
  93. B D. Goldstein, G. Witz, M. Amoruso and W. Troll, Protease inhibitors antagonize the activation of polymorphonuclear leukocyte oxygen consumption, Biochem. Bioph,1s. Res. Commun. 88: 854 (1979).CrossRefGoogle Scholar
  94. K M. K. Rao and V. Castranova, Phenylmethyl sulphonyl fluoride (PMSF) inhibits chemotactic peptide-induced actin polymerization and respiratory burst activity in human neutrophils, Fed. Proc. 46: Abs. 3907 (1987).Google Scholar
  95. E Wilson, M. C. Olcott, R. M. Bell, A. H. Merrill and D. J. Lambeth, Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. Role of protein kinase C in activation of the burst, J. Biol. Chem. 261: 12616 (1986).Google Scholar
  96. F Rossi, V. DellaBianca and P. Bellavite Inhibition of the respiratory burst and of phagocy,;osis by nordihydroguaiaretic acid in neutrophils. FEBS Lett. 127: 183 (1981).Google Scholar
  97. I. Aviram and Y. I. Henis, Activation of human neutrophil NADPH oxidase and lateral mobility of membrane proteins, Biochim. Bio2hys. Acta 805: 227 (1984).CrossRefGoogle Scholar
  98. 88.
    G Goldfarb, J. Belghiti, H. Gautero and P. Boivin, In vitro effect of benzodiazepines on polymorphonuclear leukocyte oxidative activity. Anesthesiol. 60: 57 (1984).Google Scholar
  99. 89.
    P K. Peterson, B. Sharp, G. Gekker, C. Brummit and W. F. Keane, Opioid-mediated peripheral blood mononuclear cell respiratory burst activity, J. Immunol. 138: 3907 (1987). suppression of culturedGoogle Scholar
  100. J. W. C. White, A. W. Gelb, H. R. Wexler, C. R. Stiller and P. A. Keown, The effects of intravenous anaesthetic agents on human neutrophil chemiluminescence, Can. Anaesth. Soc. J. 30: 506 (1983).CrossRefGoogle Scholar
  101. M. Nakagawara, K. Takeshige, J. Takamatsu, S. Takahasi, J. Yoshitake and S. Minakami, Inhibition of superoxide production and Ca2+ mobilization in human neutrophils by halotane, enflurane, and isoflurane, Anesthesiol. 64: 4 (1986).CrossRefGoogle Scholar
  102. 92.
    S. D. Somerfield, G. L. Stach, C. Mraz, F. Gervais and E. Skamene, Bee venom melittin blocks neutrophil 02-production, Inflammation 10: 175 (1986).Google Scholar
  103. 93.
    S. Tsunawaki, M. Sporn, A. Ding and C. Nathan, Deactivation of macrophages by transforming growth factor-beta, Nature 334: 260 (1988).PubMedGoogle Scholar
  104. T. Yamaguchi and K. Kkinuma, Inhibitory effect of cibacron blue F3GA on the O generating enzyme of guinea pig polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 104: 200 (1982).CrossRefGoogle Scholar
  105. 95.
    D. R. Light, C. Walsh, A. M. O’Callaghan, E. J. Goetzl and A. I. Tauber, Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes, Biochemistry 20: 1468 (1981).PubMedGoogle Scholar
  106. A. R. Cross and 0. T. G. Jones, The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase, Biochem. J. 237: 111 (1986).CrossRefGoogle Scholar
  107. T. Iizuka, S. Kanegasaki, R. Makino, T. Tanaka and Y. Ishimura, Pyridine and imidazole reversibly inhibit the respiratory burst in porcine and human neutrophils: evidence for the involvement of cytochrome b558 in the reaction, Biochem. Biophys. Res. Commun. 130: 621 (1985).CrossRefGoogle Scholar
  108. 98.
    F. Rossi and G. Zoppi, Effect of menadione on the phagocytic activity of guinea pig polymorphonuclear leukocytes, Experientia 22: 433 (1966).PubMedGoogle Scholar
  109. C. J. Butterick, R. L. Baehner, L. A. Boxer and R. A. Jersild, Vitamin E-a selective inhibitor of the NADPH oxidoreductase enzyme system in human granulocytes. Am. J. Pathol. 112: 287–293 (1983).Google Scholar
  110. D. R. Crawford and D. L. Schneider, Evidence that a quinone may be required for the production of superoxide and hydrogen peroxide in neutrophils, Biochem. Biophys. Res. Commun. 99: 1277 (1981).CrossRefGoogle Scholar
  111. T. Yamaguchi, M. Kaneda and K. Kakinuma, Essential requirement of magnesium ion for optimal activity of the NADPH oxidase of guinea pig polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 115: 261 (1983).CrossRefGoogle Scholar
  112. P. Bellavite, M. C. Serra, A. Davoli, J. V. Bannister and F. Rossi, The NADPH oxidase of guimea pig polymorphonuclear leucocytes. Properties of the deoxycholate extracted enzyme, Molec. Cell. Biochem. 52: 17 (1983).Google Scholar
  113. 103.
    A. I. Tauber and E. J. Goetzl, Structural and catalytic properties of the solubilized superoxide-generating activity of human polymorphonuclear leukocytes. Solubilization, stabilization in solution and partial characterization, Biochemistry 18: 5576 (1979).PubMedGoogle Scholar
  114. 104.
    G. L. Babior, R. E. Rosin, B. J. McMurrich, W. A. Peters and B.M. Babior, Arrangement of the respiratory burst oxidase in the plasma membrane of the neutrophil, J. Clin. Invest. 67: 1724 (1981).CrossRefGoogle Scholar
  115. 105.
    J. Doussiere and P. V. Vignais, Immunological properties of 0 generating oxidase from bovine neutrophils, FEES Lett. 234: 362 (1988).CrossRefGoogle Scholar
  116. 106.
    Y. Fukuhara, Y. Ise and K. Kakinuma, Immunological studies on the respiratory burst oxidase of pig neutrophils, FEBS Lett. 229: 150 (1988).PubMedGoogle Scholar
  117. 107.
    G. Berton, S. Dusi, M. C. Serra, P. Bellavite and F. Rossi, Studies on the NADPH oxidase of phagocytes. Production of a monoclonal antibody which blocks the enzymatic activity of pig neutrophils NADPH oxidase, J. Biol. Chem. (submitted for publication).Google Scholar
  118. P. Patriarca, R. E. Basford, R. Cramer, P. Dri and F. Rossi, Studies on the NADPH oxidizing activity in polymorphonuclear leukocytes: The mode of association with the granule membrane, the relationship to myelo peroxidase and the interference of hemoglobin with NADPH oxidase determination, Biochim. Bio2hys. Acta 362: 221 (1974).Google Scholar
  119. R. C. Jandl, J. Andre’-Schwartz, L. Borges-Dubois, R. S. Kipnes, B. J. McMurrich and B. M. Babior, Termination of the respiratory burst in human neutrophils. J. Clin. Invest. 61: 1176 (1978).CrossRefGoogle Scholar
  120. I. Maridonneau-Parini, J. Clerk and B. S. Polla, Heat shock inhibits NADPH oxidase in human neutrophils, Biochem. Biophys. Res. Commun. 154: 179 (1988).CrossRefGoogle Scholar
  121. M. Miyahara, Watanabe, E. Okimasu and K. Utsumi, Charge-dependent regulation of NADPH oxidase activity in guinea-pig polymorphonuclear leukocytes. Biochem. Bio2hys. Acta 929: 253 (1987).CrossRefGoogle Scholar
  122. D. E. VanEpps and M. L. Garcia, Enhancement of neutrophil function as a result of prior exposure to chemotactic factor. J. Clin. Invest. 66: 167 (1980).CrossRefGoogle Scholar
  123. 113.
    D. English, J. S. Roloff and J. M. Lukens, Chemotactic factor enhancement of superoxide release from fluoride and phorbol myristate acetate stimulated neutrophils. Blood 58: 129 (1981).PubMedGoogle Scholar
  124. M. Kaku, K. Yagawa, S. Nagao and A. Tanaka, Enhanced superoxide anion release from phagocytes by muramyl dipeptide or lipopolysaccharide, Infect. Immun. 39: 559 (1983).Google Scholar
  125. L. A. Guthrie, L. C. McPhail, P. M. Henson and R. B. Johnston, Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme, J. Exp. Med. 160: 1657 (1984).CrossRefGoogle Scholar
  126. L. C. McPhail, C. C. Clayton and R. Snyderman, The NADPH oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals, J. Biol. Chem. 259: 5768 (1984).Google Scholar
  127. 117.
    J. C. Gay, J. K. Beckman, A. R. Brash, J. A. Oates and J. N, Lukens Enhancement of chemotactic factor-stimulated neutrophil oxidative metabolism by leukotriene B4, Blood 64: 780 (1984).PubMedGoogle Scholar
  128. B. Dewald, T.G. Payne and M. Baggiolini, Activation of NADPH oxidase of human neutrophils. Potentiation of chemotactic peptide by a diacylglycerol, Biochem. Biophys. Res. Commun. 125: 367 (1984).CrossRefGoogle Scholar
  129. R. J. Smith, L. M. Sam and J. M. Justen, Diacylglycerols modulate human polymorphonuclear neutrophil responsiveness: Effects on intracellular calcium mobilization, granule exocytosis, and superoxide anion production, J. Leukoc. Biol. 43: 411 (1988).Google Scholar
  130. B. Dewald and M. Baggiolini, Activation of NADPH oxidase in human neutrophils. Synergism between fMLP and the neutrophil products PAF and LTB4, Biochem. Biophys. Res. Commun. 128: 297 (1985).CrossRefGoogle Scholar
  131. P A. Ward, T. W. Cunningham, B. A. M. Walker and K. J. Johnson, Differing calcium requirements for regulatory effects of ATP, ATPgammaS and adenosine on 02- responses of human neutrophils, Biochem. Biophys. Res. Commun. 154: 746 (1988).Google Scholar
  132. D B. Kuhns, D. G. Wright, J. Nath, S. Kaplan and 13 E.+ Basford, ATP induces transient elevations of (Ca)i in hman neutrophils and primes these cells for enhances 0 generation, Lab. Invest. 58: 448 (1988).Google Scholar
  133. Y Ozaki, T. Ohashi and S. Kume, Potentiation of neutrophil function by recombinant DNA-produced interleukin la. J. Leukoc. Biol. 42: 621 (1987).CrossRefGoogle Scholar
  134. C F. Nathan, H. W. Murray, M. E. Wiebe and B. Y. Rubin, Identification of interferon gamma as the lymphokine that activates human macrophages oxidative metabolism and antimicrobial activity, J. Exp. Med. 158: 670 (1983).CrossRefGoogle Scholar
  135. G. Berton, L. Zeni, M. A. Cassatella and F. Rossi, Gamma interferon is able to enhance the oxidative metabolism of human neutrophils, Biochem. Biophys. Res. Commun.138: 1276 (1986).CrossRefGoogle Scholar
  136. 126.
    B Perussia, M. Kobayashi, M. E. Rossi, I. Anegon and G. Trinchieri, Immune interferon enhances functional properties of human granulocytes: role of Fc receptors and effect of lymphotoxin, tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor, J. Immunol. 138: 765 (1987).PubMedGoogle Scholar
  137. 127.
    I C. Kowanko and A. Ferrante, Stimulation of neutrophil respiratory burst and lysosomal enzyme release by human interferon-gamma, Immunology 62: 149 (1987).Google Scholar
  138. 128.
    R H. Weisbart, L. Kwan, D. W. Golde and J.C. Gasson, Human GM-CSF Primes neutrophils for enhanced oxidative metabolism in response to the major physiological chemoattractants, Blood 69: 18 (1987).PubMedGoogle Scholar
  139. 129.
    A Ferrante, M. Nandoskar, E. J. Bates, D. H. B. Goh andGoogle Scholar
  140. L. J. Beard Tumor necrosis factor beta (lymphotoxin) inhibits locomotion and stimulates the respiratory burst and degranulation of neutrophils, Immunology 63: 507 (1988).Google Scholar
  141. 130.
    B Perussia, E. T. Dayton, R. Lazarus, V. Fanning and G. Trinchieri, Immune interferon induces the receptor for monomeric IgGl on human monocytic and myeloid cells, J. Exp. Med. 158: 1092 (1983).CrossRefGoogle Scholar
  142. P. W. Andrew, A. K. Robertson, D. B. Lowrie, A. R. Cross and 0. T. G. Jones, Induction of synthesis of components of the hydrogen peroxide generating oxidase during activation of the human monocytic cell line U937 by interferon-gamma, Biochem. J. 248: 281 (1987).CrossRefGoogle Scholar
  143. 132.
    P. E. Newburger, R. A. B. Ezekowitz, C. Whitney, J. Wright and S. H. Orkin, Induction of phagocyte cytochrome b heavy chain gene expression by interferon gamma, Proc.Natl. Acad. Sci. U.S.A. 85, 5215 (1988).CrossRefGoogle Scholar
  144. 133.
    G. Berton, M. Cassatella, G. Cabrini and F. Rossi, Activation of mouse macrophages causes no change in expression and function of phorbol diester receptors, but is accompanied by alterations in the activity and kinetic parameters of NADPH oxidase, Immunology 54: 371 (1985).Google Scholar
  145. C. F. Nathan, C. R. Horowitz, J. DeLaHarpe, S. Vadhan-Raj, S. A. Sherwin, H. F. Oettgen and S. Krown,Administration of recombinant nterferon gamma to cancer patients enhances monocyte secretion of hydrogen peroxide, Proc. Natl. Acad. Sci. U.S.A. 82: 8686 (1985).Google Scholar
  146. R. A. B. Ezekowitz, S. H. Orkin and P. E. Newburger, Recombinant interferon gamma augments superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease, J. Clin. Invest. 80: 1009 (1987).CrossRefGoogle Scholar
  147. 136.
    J. M. G. Sechler, H. R. Malech, C. J. White and J. I. Gallin, Recombinant human interferon-gammareconstitutes defective phagocyte function in patients with chronic granulomatous disease of childhood, Proc. Natl. Acad. Sci. U.S.A. 85: 4874 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. Bellavite
    • 1
  • M. C. Serra
    • 1
  • F. Bazzoni
    • 1
  • S. Miron
    • 1
  • S. Dusi
    • 1
  1. 1.Istituto di Patologia GeneraleUniversità di VeronaVeronaItaly

Personalised recommendations