Biological Effects of Oxysterols

  • A. Crastes de Paulet
  • M. E. Astruc
  • J. Bascoul
  • R. Defay
Part of the NATO ASI Series book series (NSSA, volume 189)


The oxysterol family is very extensive: more than fifty members have been presently identified from either natural sources (plasma, tissue extracts) or artificial systems. These oxysterols are characterized by the presence of one or more oxygenated functions on the cholesterol molecule: primary, secondary or tertiary alcohol or hydroperoxide, aldehyde, ketone, epoxides, endoperoxide. The positions of the main functionalized carbon atoms are shown in Fig. 1.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.L. Smith. Mechanisms of formation of oxysterols: a general survey. in “Nato Advanced Research Workshop. Action of free radicals and active forms of oxygen on lipoproteins and membrane lipids: cellular interactions and atherogenesis”. A. Crastes de Paulet, L. Douste-Blazy and R. Paoletti Editors, Plenum Press (1990).Google Scholar
  2. 2.
    a. S. Bergström and 0. Wintersteiner. Autoxydation of sterols in colloïdal aqueous solution. III: quantitative studies on cholesterol. J. Biol. Chem. 145:309–326 (1942).Google Scholar
  3. b. S. Bergström and O. Wintersteiner. Autoxydation of sterols in colloïdal aqueous solution. IV: influence of esterification and of constitutional factors. J. Biol. Chem. 145:327–333 (1942).Google Scholar
  4. 3.
    A. Crastes de Paulet et P. Crastes de Paulet. Hétérogénéité de la fraction “ester du cholestérol” obtenue par chromatographie sur acide silicique des lipides totaux du sérum humain. in “The enzymes of lipid metabolism”, P. Desnuelle Ed., pages 106–109, Pergamon Press (1961).Google Scholar
  5. 4.
    A. Crastes de Paulet, P. Crastes de Paulet et L. Bardou. Autoxy-dation einiger 3ß-hydroxysterin esters. 1st International Congress on Fat Research, Hambourg, 84–85, (1964).Google Scholar
  6. 5.
    A.A. Kandutsch, H.W. Chen. Inhibition of sterol synthesis in cultured mouse cells by 7n -hydroxycholesterol, 7(1 -hydroxycholesterol and 7-ketocholesterol. J. Biol. Chem. 248:8408–8417 (1973).Google Scholar
  7. 6.
    C. Tabacik, M. Astruc, M. Laporte, B. Descomps, A. Crastes de Paulet and B. Serrou. Comparative study of the linetics of 3-hydroxy-3-methylglutaryl Coenzyme A reductase and [C]-acetate incorporation into cholesterol in human lymphocytes stimulated by phytohemagglutinin or sterol efflux. Biomedecine 34: 128–132 (1981).PubMedGoogle Scholar
  8. 7.
    R. Defay, M.E. Astruc, S. Roussillon, B. Descomps and A. Crastes de Paulet. DNA synthesis and 3-hydroxy-3-methylglutaryl CoA reductase activity in PHA-stimulated human lymphocytes: a comparative study of the inhibitory effects of some oxysterols with special reference to side chain hydroxylated derivatives. Biochem. Biophys. Res. Comm. 106:362–372 (1982).CrossRefGoogle Scholar
  9. 8.
    W.K. Cavenee, H.W. Chen and A.A. Kandutsch. Regulation of cholesterol biosynthesis in enucleated cells. J. Biol. Chem. 256:2675–2681 (1981).Google Scholar
  10. 9.
    F. Besème, M.E. Astruc, R. Defay and A. Crastes de Paulet. Rat liver oxysterol-binding protein: characterization and comparison with the HTC cell protein. FEBS Letters 210: 97–103 (1987).PubMedGoogle Scholar
  11. 10.
    F.R. Taylor, S.E. Saucier, E.P. Shown, E.J. Parish, A.A. Kandutsch. Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of 3-hydroxy-3-methylglutaryl CoA reductase. J. Biol. Chem. 259:12382–12387 (1984).Google Scholar
  12. 11.
    F. Besème, M.E. Astruc, R. Defay, B. Descomps and A. Crastes de Paulet. Characterization of oxysterol-binding protein in rat embryo fibroblasts and variations as a function of the cell cycle. Biochim. Biophys. Acta 886:96–108 (1986).CrossRefGoogle Scholar
  13. 12.
    G.F. Gibbons, C.R. Pullinger, H.W. Chen, W.K. Cavenee and A.A. Kandutsch. Regulation of cholesterol biosynthesis in cultured cells by probable natural precursor sterols. J. Biol. Chem. 255:395–400 (1980).Google Scholar
  14. 13.
    C. Tabacik, S. Aliau, B. Serrou and A. Crastes de Paulet. Post HMG-CoA reductase regulation of cholesterol biosynthesis in normal human lymphocytes: lanosten-3 p -o1–32-al, a natural inhibitor. Biochem. Biophys. Res. Comm. 101:1087–1095 (1981).CrossRefGoogle Scholar
  15. 14.
    N. Gerst, A. Duriatti, F. Schuber, M. Taton, P. Benveniste et A. Rahier. Potent inhibition of cholesterol biosynthesis in 3T3 fibroblasts by N-[1,5,9)-trimethyldecyl]-4 c/, 10-dimethyl8-aza-trans-decal-3 J3-ol, a new 2,3-oxidosqualene cyclase inhibitor. Biochem. Pharmacol. 37:1955–1964 (1988).Google Scholar
  16. 15.
    N.R. Javitt, E. Kok, S. Burstein, B. Cohen and J. Kutscher. 26-hydroxycholesterol: identification and quantitation in human serum. J. Biol. Chem. 256:12644–12646 (1981).Google Scholar
  17. 16.
    J.L. Lorenzo, M. Allorio, F. Bernini, A. Corsini and R. Fumagalli. Regulation of low density lipoprotein metabolism by 26-hydroxycholesterol in human fibroblasts. FEBS Letters 218: 77–80 (1987).PubMedGoogle Scholar
  18. 17.
    L.L. Smith and J.E. Van Lier$126-hydroxycholesterol levels in human aorta. Atherosclerosis 12: 1–14 (1970).Google Scholar
  19. 18.
    H6W.+ Chen, H.J. Heiniger and A.A. Kandutsch. Alteration of Rb influx and efflux following depletion of membrane sterol in L-cells. J. Biol. Chem. 253:3180–3185, (1978).Google Scholar
  20. 19.
    H.J. Heiniger, A.A. Kandutsch and H.W. Chen. Depletion of L-cell sterol depresses endocytosis. Nature 263: 515–517 (1976).PubMedGoogle Scholar
  21. 20.
    S. Yachnin, R.A. Streuli, L.I. Gordon and R.C. Hsu. Alteration of peripheral blood cell membrane function and morphology by oxygenated sterols; a membrane insertion hypothesis. Curr. Topics Hematol. 2:245–271 (1979).Google Scholar
  22. 21.
    G.A. Boissonault 10 H. J. Heiniger. 25-hydroxycholesterol indu-ced elevation in Ca uptake: correlation with depressed DNA synthesis. J. Cell Physiol. 120: 151–156 (1984).Google Scholar
  23. 22.
    Z. Lahoua, M.E. Astruc and A. Crastes de Paulet. Serum induced arachidonic acid release and prostaglandin biosynthesis are potentiated by oxygenated sterols in NRK49 F cells. Biochim. Biophys. Acta 958:396–404 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. Crastes de Paulet
    • 1
  • M. E. Astruc
    • 1
  • J. Bascoul
    • 1
  • R. Defay
    • 1
  1. 1.INSERM Unité 58MontpellierFrance

Personalised recommendations