Mutagenic Effects of Oxidized Lipids

  • Leland L. Smith
  • Sontin Mossanda Kensese
Part of the NATO ASI Series book series (NSSA, volume 189)


Oxidized lipids are suspected as being mutagenic, the mutagenicity being associated in concept with carcinogenicity as well. However, although mutagenic responses for more highly oxidized lipid degradation products have been obtained in a variety of bioassays, convincing demonstration of mutagenicity of early formed products of lipid oxidation has not been readily achieved. In many of the studies conducted todate mutagenicity has been assessed using test strains of Salmonella typhimurium in the Ames test, the bioassay emphasized in the present report.


Cumene Hydroperoxide Acid Hydroperoxide Mutagenicity Response Linolenic Acid Hydroperoxide Weak Mutagenicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Yamaguchi and Y. Yamashita, Mutagenic Activity of Autoxidized Linolenic and Linoleic Acid, Aq. Biol. Chem. 43: 2225 (1979).Google Scholar
  2. 2.
    T. Yamaguchi, Y. Yamashita, and T. Abe, Desmutagenic Activity of Peroxidase on Autoxidized Linolenic Acid, Aq. Biol. Chem. 44:959 (1980).Google Scholar
  3. 3.
    T. Yamaguchi and Y. Yamashita, Mutagenicity of Hydroperoxides of Fatty Acids and Some Hydrocarbons, Aq. Biol. Chem. 44:1675 (1980).Google Scholar
  4. 4.
    T. Yamaguchi, Activation with Catalase of Mutagenicity of Hydroperoxides of Some Fatty Acids and Hydrocarbons, Aq. Biol. Chem. 44:1989 (1980).Google Scholar
  5. 5.
    M. Scheutwinkel-Reich, G. Ingerowski, and H.-J. Stan, Microbiological Studies Investigating Mutagenicity of Deep Frying Fat Fractions and Some of Their Components, Lipids 15: 849 (1980).Google Scholar
  6. 6.
    H. W. Gardner, C. G. Crawford, and J. T. MacGregor, Negative Ames Tests of Epoxide Fatty Methyl Esters Derived from Homolysis of Linoleic Acid Hydroperoxides, Food Chem. Toxicol. 21: 175 (1983).CrossRefGoogle Scholar
  7. J. T. MacGregor, R. E. Wilson, W. E. Neff, and E. N. Frankel, Mutagenicity Tests of Lipid Oxidation Products in Salmonella typhimurium Monohydroperoxides and Secondary Oxidation Products of Methyl Linoleate and Methyl Linolenate, Food Chem. Toxicol. 23:1041 (1985).Google Scholar
  8. 8.
    I. deG. Mitchell, Microbial Assays for Mutagenicity: A Modified Liquid Culture Method Compared with the Agar Plate System for Precision and Sensitivity, Mutation Res. 54: 1 (1978).Google Scholar
  9. 9.
    L. L. Smith, V. B. Smart, and N. M. Made Gowda, Mutagenic Sterol Hydroperoxides, Mutation Res. 161: 39 (1986).CrossRefGoogle Scholar
  10. S. L. Taylor, C. M. Berg, N. H. Shoptaugh, and V. N. Scott, Lack of Mutagens in Deep-Fat-Fried Foods Obtained at the Retail Level, Food Chem. Toxicol. 20:209 (1982).Google Scholar
  11. 11.
    S. L. Taylor, C. M. Berg, N. H. Shoptaugh, and E. Traisman, Mutagen Formation in Deep-Fat Fried Foods as a Function of Frying Conditions, J. Am. Oil Chem. Soc. 60: 576 (1983).CrossRefGoogle Scholar
  12. 12.
    A. Van Gastel, R. Mathur, V. V. Roy, and C. Rukmini, Ames Mutagenicity Tests of Repeatedly Heated Edible Oils, Food Chem. Toxicol. 22: 403 (1984).CrossRefGoogle Scholar
  13. P. L. Stapleton, C. L. Hansen, K. A. Marley, R. A. Larson, and M. J. Plewa, Mutagenicity and Toxicity of Aged Corn Oil, Environm. Mutagenesis 7(Suppl 3):42 (1985).Google Scholar
  14. 14.
    B. H. Johnson and L. L. Smith, A Search for Mutagens in Human Aortal Lipid Extracts, Atherosclerosis 53: 331 (1984).Google Scholar
  15. 15.
    S. De Flora, A. Camoirano, P. Zanacchi, and C. Bennicelli, Mutagenicity Testing with TA97 and TA102 of 30 DNA-damaging Compounds, Negative with Other Salmonella Strains, Mutation Res. 134: 159 (1984).Google Scholar
  16. 16.
    B. N. Ames, J. McCann, and E. Yamasaki, Methods for Detecting Carcinogens and Mutagens with the Salmonella/Mammalian-Microsome Mutagenicity Test, Mutation Res. 31: 347 (1975).Google Scholar
  17. 17.
    D. M. Maron and B. N. Ames, Revised Methods for the Salmonella Mutagenicity Test, Mutation Res. 113: 173 (1983).Google Scholar
  18. 18.
    J. I. Teng and L. L. Smith, High-performance Liquid Chromatography of Linoleic Acid Hydroperoxides and their Corresponding Alcohol Derivatives, J. Chromatog. 350: 445 (1985).CrossRefGoogle Scholar
  19. 19.
    R. L. Bertholf, J. R. P. Nicholson, M. R. Wills, and J. Savory, Measurement of Lipid Peroxidation Products in Rabbit Brain and Organs (Response to Aluminum Exposure), Ann. Clin. Lab. Sci. 17: 418 (1987).Google Scholar
  20. 20.
    H. Y. Wong, J. A. Knight, S. M. Hopfer, O. Zaharia, C. N. Leach, and W. Sunderman, Lipoperoxides in Plasma as Measured by Liquid-Chromatographic Separation of Malondialdehyde-Thiobarbituric Acid Adduct, Clin. Chem. 33: 214 (1987).Google Scholar
  21. G. A. S. Ansari, R. D. Walker, V. B. Smart, and L. L. Smith, Further Investigations of Mutagenic Cholesterol Preparations, Food Chem. Toxicol. 20:35 (1982).Google Scholar
  22. 22.
    D. E. Levin, M. Hollstein, M. F. Christman, E. A. Schwiers, and B. N. Ames, A New Salmonella Tester Strain (TA102) with A.T Base Pairs at the Site of Mutation Detects Oxidative Mutagens, Proc. Natl. Acad. Sci. 79: 7445 (1982).Google Scholar
  23. 23.
    D. E. Levin, L. J. Marnett, and B. N. Ames, Spontaneous and MutagenInduced Deletions: Mechanistic Studies in Salmonella Tester Strain TA102, Proc. Natl. Acad. Sci. 81: 4457 (1984).CrossRefGoogle Scholar
  24. 24.
    M. Ruiz-Rubio, E. Alejandre-Durán, and C. Pueyo, Oxidative Mutagens Specific for A.T Base Pairs Induce Forward Mutations to L-Arabinose Resistance in Salmonella typhimurium, Mutation Res. 147:153 (1985)Google Scholar
  25. 25.
    L. L. Smith, N. M. Made Gowda, and J. I. Teng, Sterol Hydroperoxide Metabolism by Salmonella typhimurium J. Steroid Biochem. 26: 259 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    L. E. Kier, D. J. Brusick, A. E. Auletta, E. S. Von Halle, M. M. Brown, V. F. Simmon, V. Dunkel, J. McCann, K. Mortelmans, M. Prival, T. K. Rao, and V. Ray, The Salmonella typhimurium/Mammalian Microsomal Assay. A Report of the U. S. Environmental Protection Agency Gene-Tox Program, Mutation Res. 168: 69 (1986).Google Scholar
  27. 27.
    W. von der Hude, C. Behm, R. Gürtler, and A. Basler, Evaluation of the SOS Chromotest, Mutation Res. 203: 81 (1988).Google Scholar
  28. I. deG. Mitchell, Forward Mutation in Escherichia coli and Gene Conversion in Saccharomyces cerevisiae Compared Quantitatively with Reversion in Salmonella typhimurium, Agents Actions 10:287 (1980).Google Scholar
  29. 29.
    B. N. Ames, M. C. Hollstein, and R. Cathcart, Lipid Peroxidation and Oxidative Damage to DNA. in: Lipid Peroxides in Biology and Medicine, K. Yagi, ed., Academic Press, New York (1982), pp. 339–351.Google Scholar
  30. L. Winquist, U. Rannug, A. Rannug, and C. Ramel, Protection from Toxic and Mutagenic Effects of 8202 by Catalase Induction in Salmonella typhimurium, Mutation Res. 141:145 (1984).Google Scholar
  31. 31.
    J. Xu, W.-Z. Whong, and T.-m. Ong, Validation of the Salmonella (SV50)/Arabinose-Resistant Forward Mutation Assay System with 26 Compounds, Mutation Res. 130: 79 (1984).Google Scholar
  32. 32.
    Y. Fujita, K. Wakabayashi, M. Nagao, and T. Sugimura, Implication of Hydrogen Peroxide in the Mutagenicity of Coffee, Mutation Res. 144: 227 (1985).Google Scholar
  33. 33.
    E. H. Berglin and J. Carlsson, Effect of Hydrogen Sulfide on the Mutagenicity of Hydrogen Peroxide in Salmonella typhimurium Strain TA102, Mutation Res. 175: 5 (1986).Google Scholar
  34. 34.
    H. F. Stich, L. Wei, and P. Lam, The Need for a Mammalian Test System for Mutagens: Action of Some Reducing Agents, Cancer Lett. 5: 199 (1978).Google Scholar
  35. 35.
    W. H. Kalus, W. G. Filby, and R. Münzner, Chemical Aspects of the Mutagenic Activity of the Ascorbic Acid Autoxidation System, Z. Naturforsch. 37c: 40 (1982).Google Scholar
  36. 36.
    M. Nagao, Y. Suwa, H. Yoshizumi, and T. Sugimura, Mutagens in Coffee, Banbury Report 17: 69 (1984).Google Scholar
  37. 37.
    Y. Fujita, K. Wakabayashi, M. Nagao, and T. Sugimura, Characterization of Major Mutagens of Instant Coffee, Mutation Res. 142: 145 (1985).Google Scholar
  38. 38.
    E. Alejandre-Durân, A. Alonso-Moraga, and C. Pueyo, Implication of Active Oxygen Species in the Direct-Acting Mutagenicity of Tea, Mutation Res. 188: 251 (1987).Google Scholar
  39. 39.
    H. Kosugi and K. Kikugawa, Thiobarbituric Acid Reaction of Aldehydes and Oxidized Lipids in Glacial Acetic Acid, Lipids 29: 915 (1985).Google Scholar
  40. 40.
    J. A. Watson and J. Schubert, Action of Hydrogen Peroxide on Growth Inhibition of Salmonella typhimurium J. Gen. Microbiol. 57: 25 (1969).PubMedGoogle Scholar
  41. 41.
    G. J. Finn and S. Condon, Regulation of Catalase Synthesis in Salmonella typhimurium J. Bacteriol. 123: 570 (1975).PubMedGoogle Scholar
  42. 42.
    P. C. Lee, B. R. Bochner, and B. N. Ames, AppppA, Heat-shock Stress, and Cell Oxidation, Proc. Natl. Acad. Sci. 80: 7496 (1983).CrossRefGoogle Scholar
  43. 43.
    M. F. Christman, R. W. Morgan, F. S. Jacobson, and B. N. Ames, Positive Control of a Regulon for Defenses against Oxidative Stress and Some Heat-Shock Proteins in Salmonella typhimurium, Cell 41: 753 (1985).PubMedCrossRefGoogle Scholar
  44. 44.
    R. W. Morgan, M. F. Christman, F. S. Jacobson, G. Storz, and B. N. Ames, Hydrogen Peroxide-Inducible Proteins in Salmonella typhimurium Overlap with Heat Shock and Other Stress Proteins, Proc. Natl. Acad. Sci. 83: 8059 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Leland L. Smith
    • 1
  • Sontin Mossanda Kensese
    • 1
  1. 1.Department of Human Biological Chemistry and GeneticsUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations