Decompartmentalised Iron, Microbleeding and Membrane Oxidation

  • Catherine Rice-Evans
Part of the NATO ASI Series book series (NSSA, volume 189)


In pathological states, current models which account for the phenomenon of oxidative stress in cells and tissues include: increased generation of oxygen radicals, modified antioxidant defences and decompartmenta.lisation of iron proteins and complexes, all of which may be mutually interactiv.e (Fig 1).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Blake, P.J. Gallagher, A.R. Potter, M.J. Bell, P.A. Bacon, (1984). The effect of synovial iron on the progression of rheumatoid disease. A histologic assessment of patients with early rheumatoid synovitis. Arthritis Rheum. 27, 495 (1984).Google Scholar
  2. 2.
    S. Yoshino, D.R. Blake, S. Hewitt, C. Morris, P.A. Bacon, Effect of blood on the activity and persistence of antigen reduced inflammation in the rat air pouch. Ann.Rheum. Dis. 44, 485 (1985).Google Scholar
  3. 3.
    I.J. Rowland and M.C.R. Symons, “Tumours and iron: the use of electron spin resonance”, in: Free Radical Methodology and Concepts,“ C. Rice-Evans and B. Halliwell, eds, Richelieu Press, London (1988).Google Scholar
  4. 4.
    E.A. Rachmilewitz, E. Shinar, O. Shalev, U. Galili, S.L. Schrier, Erythrocyte membrane alteration alterations in beta-Thalassaemia. Clin. Haematol. 14, 163 (1985)PubMedGoogle Scholar
  5. 5.
    C. Rice-Evans, “Iron chelators and the suppression of oxidative damage in erythrocytes: extracellular and intracellular responses”, in: Free Radicals, Metal ions and Biopolymers, P. Beaumont, D. Deeble, B. Parsons, C. Rice-Evans, eds, Richelieu Press, London (1989) In press.Google Scholar
  6. 6.
    J.F. Koster and R.G. Slee, Ferritin, a physiological iron donor for microsomal lipid peroxidation. FEBS Lett 199, 85 (1986).CrossRefGoogle Scholar
  7. 7.
    P. Biemond, H. Van Eijk, A.J.G. Swaak, J.F. Koster, J. Iron mobilisation from ferritin by a superoxide derived from stimulated polymorphonuclear leukocytes. Clin. Invest. 73, 1576 (1984).CrossRefGoogle Scholar
  8. 8.
    P. Biemond, A.J. G.Swaak, C.M. Beindorff, J. Koster, Biochem J. 239, 169 (1986). On the superoxide-dependent and independent mechanism of iron mobilisation from ferritin by Xanthine oxidase its implications for oxygen free radical induced tissue destruction during ischaemia and inflammation.Google Scholar
  9. 9.
    J.M.C. Gutteridge, Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 201, 291 (1986).CrossRefGoogle Scholar
  10. 10.
    J.M.C. Gutteridge, The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochem. Biophys. Acta 917, 219 (1987).CrossRefGoogle Scholar
  11. 11.
    C. Rice-Evans, R. Khan, G. Okunade: Myoglobin oxidation, hydrogen peroxide and iron release. Free Rad. Res. Comm. Submitted (1989).Google Scholar
  12. 12.
    A. Puppo and B. Halliwell. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Biochem J. 249, 185 (1988).CrossRefGoogle Scholar
  13. 13.
    G. Minotti and S.D. Aust, The requirement for iron (IV) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J. Biol. Chem 262, 1098 (1987).PubMedGoogle Scholar
  14. 14.
    G. Minotti and S.D. Aust, Role of iron in the initiation of lipid peroxidation. Chem. Phys. Lipids 44, 191 (1987).CrossRefGoogle Scholar
  15. 15.
    P.J. O’Brien, Intracellular mechanisms for the decomposition of a lipid hydroperoxide. Can. J. Biochem, 47, 485 (1969).Google Scholar
  16. 16.
    R. Labeque and L. Marrett, Reaction of haematin with allylic fatty acid hydroperoxides. Biochemistry, 27. 7060 (1988).CrossRefGoogle Scholar
  17. 17.
    S. Scott Panter, S.M. Sadrzadeh, P.E. Hallaway, J.L. Hanes, V.E. Anderson, J.W. Eaton. Hypohaptoglobinemia associated with familial epilepsy. J. Exp. Med. 161, 748 (1985).CrossRefGoogle Scholar
  18. 18.
    M. Doly, B. Bonhomme, J.C. Vennat, Experimental study of the retinal toxicity of haemoglobinic iron. Ophthalmis Res. 18, 21 (1986).CrossRefGoogle Scholar
  19. 19.
    C. Rice-Evans and E. Baysal, Iron-mediated oxidative stress in erythrocytes. Biochem.J. 244, 191.CrossRefGoogle Scholar
  20. 20.
    E. Baysal and C. Rice-Evans, Modulation of iron-mediated oxidative damage in erythrocytes by cellular energy levels. Free Rad. Res. Comm. 3, 227.Google Scholar
  21. 21.
    C. Rice-Evans and A. Hartley, “Free radicals, erythrocyte disorders and iron decompartmentalisation”, in: Medical, Biochemical and Chemical Aspects of Free Radicals, E. Nikki and Y. Toshikawa, eds. Elsevier, Amsterdam (1989) In press.Google Scholar
  22. 22.
    C. Rice-Evans, S.C. Omorphos, E. Baysal, Sickle cell membranes and oxidative damage. Biochem J. 237, 265.CrossRefGoogle Scholar
  23. 23.
    C. Rice-Evans, Sickle Cell Patholgy: is the membrane important, in: Free Radicals, Cell Damage and Disease, C. Rice-Evans, ed. Richelieu Press, London (1986).Google Scholar
  24. 24.
    A. Hartley and C. Rice-Evans. Membrane-associated iron species and membrane oxidation in sickle cell disease. Biochem. Soc. Trans. In press (1989a).Google Scholar
  25. 25.
    A. Hartley and C. Rice-Evans. The nature of membrane-bound iron-species involved in radical-mediated damage to sickle erythrocytes. Biochem. Soc. Trans. In press (1989b).Google Scholar
  26. 26.
    D. Galaris, E. Cadenas, P. Hochstein, Glutathione-dependent reduction of peroxides during ferryl-and met-myoglobin interconversion. Free Rad. Biol. Med. In Press (1989).Google Scholar
  27. 27.
    M.C.R. Symons, Application of radiation and ESR spectroscopy to the study of ferryl haemoglobin and myoglobin. J Chem Soc Faraday Trans. In cress (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Catherine Rice-Evans
    • 1
  1. 1.Department of Biochemistry and ChemistryRoyal Free Hospital School of MedicineLondonUK

Personalised recommendations