Molecular Mechanisms of Oxidative Cell Damage

  • Sten Orrenius
Part of the NATO ASI Series book series (NSSA, volume 189)


Tissue necrosis has long been known to be associated with the accumulation of calcium in the necrotic tissue, and it has been proposed that the calcium ion may play a critical role in cell killing.1 Although the generality of this hypothesis has been questioned,2 the involvement of Ca2+ in the development of lethal cell injury is now supported by a number of observations. For example, Shanne and associates3 found that removal of Ca2+ from the medium protected cultured hepatocytes from the toxicity of a variety of agents. This and similar observations led to the proposal that an influx of extracellular Ca2+ could play an important role in the development of irreversible cell damage.4


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Campbell, “Intracellular Calcium: Its Universal Role as Regulator,” Wiley and Sons, Chichester (1983).Google Scholar
  2. 2.
    P. E. Starke, J. B. Hoek, and J. L. Farber, Calcium-dependent and calcium-independent mechanisms of irreversible cell injury in cultured hepatocytes, J. Biol. Chem. 261: 3006 (1986).PubMedGoogle Scholar
  3. 3.
    F. A. Shanne, A. B. Kane, E. E. Young, and J. L. Farber, Calcium dependence of toxic cell death: a final common pathway, Science 206: 700 (1979).CrossRefGoogle Scholar
  4. 4.
    J. L. Farber, The role of Ca2+ in cell death, Life Sciences 29: 1289 (1981).CrossRefGoogle Scholar
  5. 5.
    S. Orrenius, and G. Bellomo, Toxicological implications of perturbation of Ca2+ homeostasis in hepatocytes, in: “Calcium and Cell Function,” Vol. VI, W. Y. Cheung, ed., Academic Press, Orlando (1986).Google Scholar
  6. 6.
    A. L. Lehninger, A. Vercesi, and E. Bababunmi, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Nati. Acad. Sci. USA 75: 1690 (1978).CrossRefGoogle Scholar
  7. 7.
    L. Moore, T. Chen, H. R. Knapp, and E. Landon, Energydependent Ca2+ sequestration activity in rat liver microsomes, J. Biol. Chem. 250: 4562 (1975).PubMedGoogle Scholar
  8. 8.
    G. Bellomo, F. Mirabelli, P. Richelmi, and S. Orrenius, Critical role of sulfhydryl group(s) in the ATP-Ca2+-sequestration by the plasma membrane fraction from rat liver, FEBS Letters 163: 136 (1983).CrossRefGoogle Scholar
  9. 9.
    H. Sies, Biochemistry of oxidative stress, Angewandte Chemie International Editions English 25: 1058 (1986).CrossRefGoogle Scholar
  10. 10.
    S. Orrenius, and P. Moldéus, The multiple roles of glutathione in drug metabolism, Trends Pharmacol. Sci. 5: 432 (1984).Google Scholar
  11. 11.
    D. Di Monte, G. Bellomo, H. Thor, P. Nicotera,and S. Orrenius, Menadione-induced cytotoxicity is associated with protein thiol oxidation and alteration in intracellular Ca2+ homeostasis. Arch. Biochem. Biophys. 235: 343 (1984).CrossRefGoogle Scholar
  12. 12.
    H. Thor, M. Smith, P. Hartzell, G. Bellomo, S. A. Jewell, and S. Orrenius, The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes - A study of implications of oxidative stress in intact cells, J. Biol. Chem. 257: 12419 (1982).PubMedGoogle Scholar
  13. 13.
    S. A. Jewell, G. Bellomo, H. Thor, S. Orrenius, and M.T. Smith, Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis, Science 214: 1257 (1982).CrossRefGoogle Scholar
  14. 14.
    F. Mirabelli, A. Salis, V. Marinoni, G. Finardi, G. Bellomo, H. Thor, and S. Orrenius, Menadione-induced bleb formation in hepatocytes is associated with the oxidation of thiol groups in actin, Arch. Biochem. Biophys. 264: 261 (1988).CrossRefGoogle Scholar
  15. 15.
    W. Y. Cheung, Calmodulin plays a pivotal role in cellular regulation, Science 217: 1257 (1980).Google Scholar
  16. 16.
    N. L. Collier, and K. Wang, Purification and properties of human platelets P235, J. Biol. Chem. 257: 6937 (1982).PubMedGoogle Scholar
  17. 17.
    P. Nicotera, P. Hartzell, C. Baldi, S.-Å. Svensson, G.Bellomo, and S. Orrenius, Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and the stimulation of a non-lysosomal proteolytic system, J. Biol. Chem. 261: 14628 (1986).PubMedGoogle Scholar
  18. 18.
    P. Nicotera, P. Hartzell, G. Davis, and S. Orrenius, The formation of plasma membrane blebs in hepatocytes exposed to agents that increase cytosolic Ca2+ is mediated by the activation of a non-lysosomal proteolytic system, FEBS Letters 209: 139 (1986).CrossRefGoogle Scholar
  19. 19.
    G. A. Moore, J. P. O’Brien, and S. Orrenius, Menadione (2methyl-1,4-naphthoquinone)-induced Ca2+ release from rat-liver mitochondria is caused by NAD(P)H oxidation, Xenobiotica 16: 873 (1986).CrossRefGoogle Scholar
  20. 20.
    H. Thor, P. Hartzell, S.-A. Svensson, S. Orrenius, F. Mirabelli, V. Marinoni, and G. Bellomo, On the role of thiol groups in the inhibition of liver microsomal Ca2+-sequestration by toxic agents, Biochem. Pharmacol. 34: 3717 (1985).Google Scholar
  21. 21.
    P. Nicotera, M. Moore, F. Mirabelli, G. Bellomo, and S. Orrenius, Inhibition of hepatocyte plasma membrane Ca2+- ATPase activity by menadione metabolism and its restoration by thiols, FEBS Letters 181: 149 (1985).CrossRefGoogle Scholar
  22. 22.
    P. Nicotera, D. McConkey, S.-Å. Svensson, G. Bellomo, and S. Orrenius, Correlation between cytosolic Ca2+ concentration and cytotoxicity in hepatocytes exposed to oxidative stress, Toxicology 52: 55 (1988).CrossRefGoogle Scholar
  23. 23.
    K. R. Chien, R. G. Pfau, and J. L. Farber, Ischemic myocardial cell injury. Prevention by chlorpromazine of an accelerated phospholipid degradation and associated membrane dysfunction, Am. J. Pathol. 97: 505 (1979).PubMedPubMedCentralGoogle Scholar
  24. 24.
    T. Murachi, Intracellular Ca2+ proteases and its inhibitor protein: Calpain and calpastatin, in: “Calcium and Cell Function,” Vol. IV, W. Y. Cheung, ed., Academic Press, Orlando (1983).Google Scholar
  25. 25.
    A. H. Wyllie, Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature 284: 555 (1980).CrossRefGoogle Scholar
  26. 26.
    J. J. Cohen, and R. L. Duke, Glucocorticoíd-activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death, J. Immunol. 132: 38 (1984).PubMedGoogle Scholar
  27. 27.
    A. H. Wyllie, R. G. Morris, A. C. Smith, and D. Dunlop, Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis, J. Pathol. 14: 67 (1984).CrossRefGoogle Scholar
  28. 28.
    D. McConkey, P. Hartzell, P. Nicotera, A. H. Wyllie, and S. Orrenius, Stimulation of endogenous endonuclease activity in hepatocytes exposed to oxidative stress, Toxicol. Lett. 42: 123 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Sten Orrenius
    • 1
  1. 1.Department of ToxicologyKarolinska InstitutetStockholmSweden

Personalised recommendations