Advertisement

A New Model System for Studying the Cytotoxicity of Peroxidized Lipoproteins in Cultured Cells

  • R. Salvayre
  • A. Nègre
  • M. Lopez
  • N. Dousset
  • T. Levade
  • A. Maret
  • M. T. Pieraggi
  • L. Douste-Blazy
Part of the NATO ASI Series book series (NSSA, volume 189)

Abstract

Free radicals can be generated by physical agents, e.g. ionizing radiations1 , 2 as well as by a wide variety of biochemical reactions occuring in living organisms 3 , 4 , 5. Transition metals seem to play a major role in the interconversion of oxygen free radical species, for example in the Haber-Weiss reaction6, 7. Lipid peroxidation induced by free radical attack is amplified by autocatalytic cycles generating in turn lipid peroxide free radicals; this “propagation” step leads to the “termination” step which is characterized by the formation of non-radical compounds such as short chain aldehydes, ketones, alkanes, carboxylic acids, lipid dimers6.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Latarjet, Les peroxydes organiques en radiologie, in, Les peroxydes organiques en radiologie, in. “Action chimique et biologique des radiations” (4serie), Masson, Paris (1958).Google Scholar
  2. 2.
    J. B. Mudd, The role of free radicals in toxicity of air polluants, in “Free radicals in biology”, W.A. Pryor Ed., vol. 2, Academic Press, New-York, 203–211 (1976).Google Scholar
  3. 3.
    R. Mason, Free-radical intermediates in the metabolism of toxic chemicals, in “Free radicals in biology”, W.A. Pryor Ed., vol. 5, Academic Press, New-York, 161–221 (1982).Google Scholar
  4. 4.
    J. W. Heinecke, L. Baker, H. Rosen, A. Chait, Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells, J. Clin. Invest., 77: 757–761 (1986).CrossRefGoogle Scholar
  5. 5.
    P. Gorog, J. D. Pearson, V. V. Kakkar, Generation of reactive oxygen metabolism by phagocytosing endothelial cells, Atherosclerosis 72: 19–27 (1988).CrossRefGoogle Scholar
  6. 6.
    S. D. Aust, B. A. Svingen, The role of iron in enzymatic lipid peroxidation, “Free radicals in biology”, W.A. Pryor Ed., vol. 5, Academic Press, New-York, 1–28 (1982).Google Scholar
  7. 7.
    J. M. Braughler, L. A. Duncan, R. L. Chase, The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation, L. Biol. Chem., 261: 10282–10289 (1986).Google Scholar
  8. 8.
    J. R. Hessler, D. W. Morel, L.J. Lewis, G. M. Chisolm, Lipoprotein oxidation and lipoprotein-induced cytotoxicity, Arteriosclerosis, 3: 215–222 (1983).CrossRefGoogle Scholar
  9. 9.
    H. Esterbauer, G. Jýrgens, O. Quehenberger, E. Koller, Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamine E and generation of aldehydes, J. Lip. Res., 28: 495–509 (1987) .Google Scholar
  10. 10.
    G. Jürgens, H. Hoff, G. M. Chisolm, H. Esterbauer, Modification of human serum low density lipoprotein by oxidation: characterization and pathophysiological implications, Chem. Phys. Lipids 45: 315–336 (1987).CrossRefGoogle Scholar
  11. 11.
    J. W. Heinecke, H. Rosen, A. Chait, Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture, J. Clin. Invest., 74: 1890–1894 (1984).CrossRefGoogle Scholar
  12. 12.
    V. N. Schumaker and D.L. Puppione, Sequential flotation ultracentrifugation, Meth. Enzymol. 128: 155–170 (1986).CrossRefGoogle Scholar
  13. 13.
    T. Henriksen, E. M. Mahoney, D. Steinberg, Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins Proc. Natl. Acad. Sci., 78: 6499–6503 (1981) .CrossRefGoogle Scholar
  14. 14.
    U. P. Steinbrecher, S. Parthasarathy, D. Leake, J. L. Witztum, D. Steinberg, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids, Proc. Natl. Acad. Sci., 81: 3883–3887 (1984).CrossRefGoogle Scholar
  15. 15.
    M. K. Cathcart, D. W. Morel, and M. G. Chisholm, Monocytes and neutrophils oxidise low density lipoprotein making it cytotoxic, J. Leukocyte Biol., 38: 341–350 (1985).Google Scholar
  16. 16.
    J. L. Goldstein, Y. K. Ho, S. K., Basu, M. S. Brown, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition, Proc. Nat. Acad. Sci., 76: 333–337 (1979).Google Scholar
  17. 17.
    S. Parthasarathy, Oxidation of low density lipoprotein by thiol compounds leads to its recognition by the acetyl LDL receptor, Biochim. Biophys. Acta, 917: 337–340 (1987).Google Scholar
  18. 18.
    U. P. Steinbrecher, J. L. Witztum, S. Parthasarathy, D. Steinberg, Decreased in reactive amino groups during oxidation on endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism, Arteriosclerosis, 7: 135–143 (1987).PubMedGoogle Scholar
  19. 19.
    J. R. Hessler, A. Lazzarini-Robertson, G. M. Chisolm, LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture, Atherosclerosis, 32: 213–229 (1979).CrossRefGoogle Scholar
  20. 20.
    R. I. Havel, H. A. Eder, J. H. Braigon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum, J. Clin. Invest., 39: 1345–1363 (1955).CrossRefGoogle Scholar
  21. 21.
    R. Salvayre, A. Nègre, A. Maret, J. Radom, L. Douste-Blazy, Extracellular origin of the lipid lysosomal storage in cultured fibroblasts from Wolman’s disease, Eur. J. Biochem., 170: 453–458 (1987).CrossRefGoogle Scholar
  22. 22.
    R. O. Recknagel, and E. A. Glende, Spectrophotometric detection of lipid conjugated dienes, Meth. Enzymol. 105: 331–337 (1984).CrossRefGoogle Scholar
  23. 23.
    K. Yagi, A simple fluorimetric assay for lipoperoxides in blood plasma, Biochem. Med., 15: 212–216 (1976).Google Scholar
  24. 24.
    J. M. Lillington, D. J. Trafford and H. L. Makin, A rapid and simple method for the esterification of the fatty acids and steroid carboxylic acids prior to gas-liquid chromatography, Clin. Chim. Acta, 111: 91–98 (1981).Google Scholar
  25. 25.
    A. Lespine, N. Dousset, B. Perret, M. De Forny, H. Chap, L. Douste-Blazy, Accumulation of large VLDL in cyclophosphamide-treated rabbits. Relationship with lipoprotein lipase deficiency, Biochem. Biophys. Res. Comm., 154: 633–640 (1988).Google Scholar
  26. 26.
    R. Salvayre, A. Nègre, A. Maret, G. Lenoir, L. Douste-Blazy, Separation and properties of molecular forms of alpha-galactosidase and alphaN-acetylgalactosaminidase from blood lymphocytes and lymphoid cell lines transformed by Epstein-Barr virus. Biochim. Biophys. Acta 659: 445–456 (1981).Google Scholar
  27. 27.
    D. P. Via, L. C. Smith, Fluorescent labelling of lipoproteins, Meth. Enzymol., 129: 848–857 (1986).CrossRefGoogle Scholar
  28. 28.
    S. Parthasarathy, U. P. Steinbrecher, J. Barnett, J. L. Witztum, D. Steinberg, Essential role of phospholipase A2 activity in endothelial cell induced modification of low density lipoprotein, Proc. Natl. Acad.,Sci., 82: 3000–3004 (1985).CrossRefGoogle Scholar
  29. 29.
    Y. K. Ho, M. S. Brown, A. J. Kayden and J. L. Goldstein, Binding, internalization and hydrolysis of LDL in long-term lymphoid cell lines from a normal subject and a patient with homozygous familial hypercholesterolemia, J. Exp. Med., 114: 444–455 (1976).Google Scholar
  30. 30.
    M. Krieger, M.S. Brown, J.R. Faust, J.L. Goldstein, Replacement of endogenous cholesteryl esters of low density lipoprotein with exogenous cholesteryl linoleate, J. Biol. Chem., 252: 4093–4101 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. Salvayre
    • 1
  • A. Nègre
    • 1
  • M. Lopez
    • 1
  • N. Dousset
    • 1
  • T. Levade
    • 1
  • A. Maret
    • 1
  • M. T. Pieraggi
    • 2
  • L. Douste-Blazy
    • 1
  1. 1.Laboratoire de Biochimie, INSERM 101Faculté de MédecineToulouse CedexFrance
  2. 2.Anatomie PathologiqueCHU RangueilToulouseFrance

Personalised recommendations