The Role of Oxidative Metabolism and Antioxidants in Low-Density Lipoprotein Structure and Metabolism

  • Wendy Jessup
  • Stephen Bedwell
  • Roger T. Dean
Part of the NATO ASI Series book series (NSSA, volume 189)


The mechanisms by which free radicals mediate alterations in the structure and function of proteins, both in aqueous and lipid-containing (e.g. membranes and lipoproteins) systems, are of relevance in many normal and pathological conditions, since proteins are frequently the components of biological systems which are responsible for functional activity and specificity. We describe here studies of these processes in human low-density lipoprotein, and their likely relevance to atherogenesis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    . J.L. Goldstein, Y.K. Ho, S.K. Basu and M.S. Brown, Binding site on macrophages that mediates uptake and degradation of acetylated low-density lipoprotein, producing massive cholesterol deposition., Proc. Natl. Acad. Sci. USA., 76: 333 (1979)CrossRefGoogle Scholar
  2. 2.
    . T. Henricksen, E.M. Mahoney and D. Steinberg, Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins., Proc. Natl. Acad. Sci. USA., 78: 6499 (1981)CrossRefGoogle Scholar
  3. 3.
    . S. Parthasarathy, D.J. Printz, D. Boyd, L. Joy and D. Steinberg, Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor., Arteriosclerosis, 6: 505 (1986).CrossRefGoogle Scholar
  4. 4.
    . J.W. Heinecke, H. Rosen and A. Chait, Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture., J. Clin. Invest., 74: 1890 (1984)CrossRefGoogle Scholar
  5. 5.
    . U.P. Steinbrecher, S. Parathasarathy, D.S. Leake, J.L. Witzum and D. Steinberg, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low-density lipoprotein phospholipids.,Proc. Natl. Acad. Sci. USA. 81: 3883 (1984)CrossRefGoogle Scholar
  6. 5.
    . U.P. Steinbrecher, S. Parathasarathy, D.S. Leake, J.L. Witzum and D. Steinberg, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low-density lipoprotein phospholipids.,Proc. Natl. Acad. Sci. USA. 81: 3883 (1984)CrossRefGoogle Scholar
  7. 7.
    . S. Parathasarathy, L. Fong, D. Otero and D. Steinberg, Regognition of solubilized apoproteins from delipidated, oxidized low density lipoprotein (LDL) by the acetyl-LDL receptor., Proc. Natl. Acad. Sci. USA. 84: 537 (1987).CrossRefGoogle Scholar
  8. 8.
    . U.P. Steinbrecher, Role of superoxide in endothelial-cell modification of low-density lipoproteins., Biochim. Biophys. Acta 959: 20 (1988).Google Scholar
  9. 9.
    . J.W. Heinecke, L. Baker, H. Rosen and A. Chait, Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells., J. Clin. Invest., 77: 757 (1986).CrossRefGoogle Scholar
  10. 10.
    . V.W.M. van Hinsbergh, M. Scheffer, L. Havekes and H.J. van Kempen, Role of endothelial cells and their products in the modification of low density lipoproteins., Biochim. Biophys. Acta, 878: 49 (1986).Google Scholar
  11. 11.
    . R. Montgomery, C.F. Nathan and Z.A. Cohn, Effect of reagent and cell-generated hydrogen peroxide on the properties of low density lipoprotein., Proc. Natl. Acad. Sci. USA., 83: 6631 (1986).CrossRefGoogle Scholar
  12. 12.
    . D.W.S. Bilheimer, S. Eisenberg and R.I. Levy, The metabolism of very low-density lipoproteins. Biochim. Biophys. Acta 60: 212 (1972).Google Scholar
  13. 13.
    . R.T. Dean, C.R. Roberts and W. Jessup, Fragmentation of intracellular and extracellular polypeptides by free radicals, in: “Intracellular protein catabolism,” E.A. Khairallah, J.S. Bond and J.W.C. Bird, eds., A.R. Liss, New York (1985).Google Scholar
  14. 14.
    H. Esterbauer, G. Jurgens, O. Quehenberger and E. Koller, Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and Vitamin E and generation of aldehydes., J. Lipid Res., 28:495 (1987) .PubMedGoogle Scholar
  15. 15.
    S.M. Thomas, W. Jessup, J.M. Gebicki and R.T. Dean, A continuous-flow automated assay for iodometric estimation of hydroperoxides., Anal. Biochem., 176:in press (1988).Google Scholar
  16. 16.
    . G.W. Burton, A. Webb and K.U. Ingold, A mild, rapid, and efficient method of lipid extraction for use in determining Vitamin E/lipid ratios, Lipids 20: 29 (1985).CrossRefGoogle Scholar
  17. 17.
    . U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4., Nature 227: 680 (1970).CrossRefGoogle Scholar
  18. 18.
    . W. Jessup, G. Jurgens, J. Lang, H. Esterbauer and R.T. Dean, Interaction of 4-hydroxynonenal-modified lipoproteins with the fibroblast apolipoprotein B/E receptor., Biochem. J. 234: 245 (1986).PubMedGoogle Scholar
  19. 19.
    . M.S. Brown, J.L. Goldstein, M. Kreiger, Y.K. Ho and R.G.W. Anderson, Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins., J. Cell Biol. 82: 597 (1979).CrossRefGoogle Scholar
  20. 20.
    . J.M. Gebicki and B.H.J. Bielski, Comparison of the capacities of the perhydroxyl and the superoide radicals to initiate chain oxidation of linoleic acid., J. Am. Chem. Soc., 103: 7020 (1981).CrossRefGoogle Scholar
  21. 21.
    . R.T. Dean and K.H. Cheeseman, Vitamin E protects proteins against free radical damage in lipid environments. Biochem. Biophys. Res. Commun., 148: 1277 (1987).PubMedGoogle Scholar
  22. 22.
    . E. Niki, Antioxidants in relation to lipid peroxidation., Chem. Phys. Lipids, 44: 227 (1987).CrossRefGoogle Scholar
  23. 23.
    . S.P. Wolff and R.T. Dean, Fragmentation of polypeptides by free radicals and its effect on susceptibility to proteolysis., Biochem. J. 234: 399 (1986).CrossRefGoogle Scholar
  24. 24.
    . R.T. Dean, S.M. Thomas and A.C. Garner, Free radical-mediated fragmentation of monoamine oxidase in the mitochondrial membrane, Biochem. J. 240: 489 (1986).CrossRefGoogle Scholar
  25. 25.
    . R.T. Dean, S.M. Thomas, G. Vince and S.P. Wolff, Oxidation induced proteolysis and its possible restriction by some secondary protein modifications., Biomed. Biochim. Acta 45: 1563 (1986).Google Scholar
  26. 26.
    . J.V. Hunt, J.A. Simpson and R.T. Dean., Hydroperoxide-mediated fragmentation of proteins., Biochem. J. 250: 87 (1988).CrossRefGoogle Scholar
  27. 27.
    . B. Halliwell and J.M.C. Gutteridge, “Free radicals in biology and medicine,” Oxford University Press, Oxford (1985).Google Scholar
  28. 28.
    S.M. Rankin, J.R.S. Moult and D.S. Leake, Effects of flavonoids on the oxidative modification of low density lipoproteins by macrophages, Brit. J. Immunol., in press (1988).Google Scholar
  29. 29.
    W. Bors, H. Heller, C. Michel and M. Saran, Flavonoids as antioxidants. Determination of their radical scavenging efficiencies. Methods in Enzymology, in press. (1988)Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Wendy Jessup
    • 1
  • Stephen Bedwell
    • 1
  • Roger T. Dean
    • 2
  1. 1.Cell Biology Research Group, Department of Biology and BiochemistryBrunel UniversityUK
  2. 2.Heart Research InstituteSydneyAustralia

Personalised recommendations