Paradoxical Effects of Vitamin E: Oxidized Lipoproteins, Prostanoids and the Pathogenesis of Atherosclerosis

  • David G. Cornwell
  • Hanfang Zhang
  • W. Bruce Davis
  • Ronald L. Whisler
  • Rao V. Panganamala
Part of the NATO ASI Series book series (NSSA, volume 189)


Sixty years ago Michel Macheboeuf published his Doctor of Science Thesis and a year later his first paper on the isolation of a lipoprotein from horse serum. His outstanding studies1 showed for the first time that a lipoprotein of constant composition was obtained by repeated precipitation from an aqueous solution. Shortly after Macheboeuf’s work appeared, Sorensen2 questioned whether isolated lipoproteins truly represented the molecular complexes found in serum. Sorensen was most concerned with the association and dissociation of solutes during lipoprotein isolation but his paper, as Chargaff3 has noted, identified the problem of true lipoprotein composition in vivo. Some twenty years later, Oncley and Gurd4 reported that isolated serum low density lipoproteins (LDL) were highly unstable complexes readily susceptible to chemical modification by processes such as oxidation (LDLOXID). Lipoprotein instability raised again the question first posed by Sorensen that purified lipoproteins might be significantly different from native lipoproteins.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Macheboeuf, “Etat des lipides de la matière vivante: Les cénapses et leur importante biologique,” Herman and Co., Paris (1936).Google Scholar
  2. 2.
    S.P.L. Sorensen, Die Konstitution der loclichen Proteinstoffe als reversibel dissoziable komponentensysteme Kolloid-Z. 53: 306 (1930).Google Scholar
  3. 3.
    E. Chargaff, Lipoproteins, Adv Protein Chem 1: 1 (1944).CrossRefGoogle Scholar
  4. 4.
    J. L. Oncley and F. R. N. Gurd, The lipoprotein of human plasma, in: “Blood Cells and Plasma Proteins, Their state in Nature,” J. L. Tullis, ed., Academic Press, New York (1953).Google Scholar
  5. 5.
    J. L. Oncley, K. W. Walton and D. G. Cornwell, A rapid method for the bulk isolation of I3-lipoproteins from human plasma, J Am. Chem Soc. 79: 4666 (1957).CrossRefGoogle Scholar
  6. 6.
    N. I. Krinsky, D. G. Cornwell and J. L. Oncley, The transport of vitamin A and carotenoids in human plasma, Arch Biochem Biophys 73: 233 (1958).CrossRefGoogle Scholar
  7. 7.
    B. R. Ray, E. O. Davisson and H. L. Crespi, Experiments on the degradation of lipoproteins from serum,J Phys Chem 58: 841 (1954)CrossRefGoogle Scholar
  8. 8.
    J. Glavind, S. Hartmann, J. Clemmesen, K. E. Jessen and H. Dam, Studies of the role of lipid peroxides in human pathology. II. the presence of peroxidized lipids in the atherosclerotic aorta, Acta Pathol Microbiol Scand. 30: 1 (1952).CrossRefGoogle Scholar
  9. 9.
    C. J. W. Brooks, G. Steel, J. D. Gilbert and W. A. Harland, Lipids of human atheroma. Part 4. Characterization of a new group of polar sterol estes from human atherosclerotic plaques, Atherosclerosis 13: 233 (1971).CrossRefGoogle Scholar
  10. 9a.
    H.-O. Mowri and T. Takano, Significance of lipid peroxides in atherosclerosis, in: “Clinical and Nutritional Aspects of Vitamin E,” O. Hayaishi and M. Mino, eds., Elsevier, Amsterdam (1987).Google Scholar
  11. 10.
    F. P. Woodford, C. J. F. Bottcher, K. Oette and E. H. Ahrens, Jr., The artifactural nature of lipid peroxides detected in extracts of human aorta, J Atheroscler. Res. 5: 311 (1965).CrossRefGoogle Scholar
  12. 11.
    K. Yagi, Assay for serum lipid peroxide level and its clinical significance, in: “Lipid Peroxides in Biology and Medicine,” K. Yagi, ed., Academic Press, New York (1982).CrossRefGoogle Scholar
  13. 12.
    A. Szczeklik and R. J. Gryglewski, Low density lipoproteins (LDL) are carriers for lipid peroxides and inhibit prostacyclin (PGI2) biosynthesis in arteries, Artery 7: 488 (1980).PubMedGoogle Scholar
  14. 13.
    J. Beitz, M. Panse, S. Fischer, C. Hora and W. Forster, Inhibition of prostaglandin I2 (PGI2) formation by LDLcholesterol or LDL-peroxides? Prostaglandins 26: 885 (1983).CrossRefGoogle Scholar
  15. 14.
    D. M. Lee, Malondialdehyde formation in stored plasma, Biochem Biophys Res Commun 95: 1663 (1980).CrossRefGoogle Scholar
  16. 15.
    G. Bittolo-Bon, G. Cazzolato, M. Saccardi and P. Avogaro, Presence of modified LDL in humans: Effect of vitamin E, in: “Clinical and nutritional Aspects of Vitamin E,” O. Hayaishi and M. Mino, eds., Elsevier Science Publishers, Amsterdam (1987).Google Scholar
  17. 16.
    D. G. Cornwell and N. Morisaki, Fatty acid paradoxes in the control of cell proliferation: prostaglandins, lipid peroxides, and cooxidation reactions, in: “Free Radicals In Biology,” Vol. VI, W. A. Pryor, ed., Academic Press, New York, (1984).Google Scholar
  18. 17.
    H. Zhang, K. H. Jones, W. B. Davis, R. L. Whisler, R. V. Panganamala and D. G. Cornwell, Oxidized low density lipoproteins in smooth muscle cell cultures: differential effects on prostanoid synthesis and viability, in: “Clinical and Nutritional Aspects of Vitamin E, ”O. Hayaishi and M. Mino, eds., Elsevier Science Publishers, Amsterdam (1987).Google Scholar
  19. 18.
    D. G. Cornwell and H. Zhang, Fatty acid metabolism and cell proliferation, in: “Lipid Peroxidation in Biological Systems,” A. Sevanian, ed., Am. Oil Chemists’ Soc., Champaign, IL (1988).Google Scholar
  20. 19.
    N. Morisaki, J. M. Stitts, L. Bartels-Tomei, G. E. Milo, R. V. Panganamala and D. G. Cornwell, Dipyridamole: an antioxidant that promotes the proliferation of aorta smooth muscle cells, Artery 11: 88 (1982).PubMedGoogle Scholar
  21. 20.
    D. G. Cornwell, J. A. Lindsey, H. Zhang and N. Morisaki, Fatty acid metabolism and cell proliferation. VI. Properties of antithrombotic agents that influence metastasis, in: “Icosanoids and Cancer,” H. Thaler-Dao, A. Crastes de Paulet and R. Paoletti, eds., Raven Press, New York (1984).Google Scholar
  22. 21.
    N. Morisaki, J. A. Lindsey, J. M. Stitts, H. Zhang and D. G. Cornwell, Fatty acid metabolism and cell proliferation. V. Evaluation of pathways for the generation of lipid peroxides, Lipids 19: 381 (1984).CrossRefGoogle Scholar
  23. 22.
    W. C. Hope, C. Dalton, L. J. Machlin, R. J. Filipski and F. M. Vane, Influence of dietary vitamin E on prostaglandin biosynthesis in rat blood, Prostaglandins 10: 557 (1975).CrossRefGoogle Scholar
  24. 23.
    A. E. Kitabchi, Hormonal status in vitamin E deficiency in: “Vitamin E, A Comprehensive Treatise,” L. J. Machlin ed., Marcel Dekker, New York (1980).Google Scholar
  25. 24.
    R. V. Panganamala and D. G. Cornwell, The effects of vitamin E on arachidonic acid metabolism, Ann N Y Acad Sci 393: 376 (1982).CrossRefGoogle Scholar
  26. 25.
    C. W. Karpen, K. A. Pritchard, J. H. Arnold, D. G. Cornwell and R. V. Panganamala, Restoration of prostacyclin/thromboxane A2 balance in the diabetic rat, Diabetes 31: 947 (1982).CrossRefGoogle Scholar
  27. 26.
    K. B. Pomerantz, A. R. Tall, S. J. Feinmark and P. J. Cannon, Stimulation of vascular smooth muscle cell prostacyclin and prostaglandin E2 synthesis by plasma high and low density lipoproteins, Circ. Res 54:554 (1984) .CrossRefGoogle Scholar
  28. 27.
    M. Yokode, T. Kita, Y. Kikawa, T. Ogorochi, S. Narumiya and C. Kawai, Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein, J Clin Invest. 81: 720 (1988).CrossRefGoogle Scholar
  29. 28.
    H. Zhang, W. B. Davis, X Chen, R. L. Whisler and D. G. Cornwell, Studies on oxidized low density lipoproteins. Controlled oxidation and a prostaglandin artifact, J Lipid Res (in press).Google Scholar
  30. 29.
    D. W. Morel, J. R. Hessler and G. M. Chisolm, Low density lipoprotein cytotoxicity induced by free radical peroxidation in lipid, J Lipid Res 24: 1070 (1983).Google Scholar
  31. 30.
    U. P. Steinbrecher, S. Parthasarathy, D. S. Leake, J. L. Witztum and D. Steinberg, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids, Proc Natl Acad Sci USA 81: 3883 (1984).CrossRefGoogle Scholar
  32. 31.
    D. L. Whitte, D. A. Barrett and D. A. Wycoff, Evaluation of an enzymatic procedure for determination of serum 20: 1282 (1974).Google Scholar
  33. 32.
    V. C. Gavino, J. S. Miller, S. O. Ikharebha, G. E. Milo and D. G. Cornwell, Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures, J Lipid Res 22: 763 (1981).PubMedGoogle Scholar
  34. 33.
    T. Henricksen, E. M. Mahoney and D. Steinberg, Enhanced macrophage degradation of biologically modified low density lipoprotein, Arteriosclerosis 3: 149 (1983).CrossRefGoogle Scholar
  35. 34.
    J. F. Nagelkerke, L. Havekes, V. W. M. Van Hinsberg and T. J. C. Van Berkel, In vivo catabolism of biologically modified LDL, Arteriosclerosis 4:256 (1984).Google Scholar
  36. 35.
    J. W. Heinecke, L. Baker, H. Rosen and A. Chait, Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells, J Clin Invest. 77:757 (1986) .CrossRefGoogle Scholar
  37. 36.
    V. O. Ivanov, S. N. Preobrazhensky, V. P. Tsibulsky, V. R. Bakaev, V. S. Repin and V. N. Smirnov, Liposome uptake by cultured macrophages mediated by modified low-density lipoproteins, Biochim Biophys Acta 846:76 (1985) .CrossRefGoogle Scholar
  38. 37.
    D. W. Morel, P. E. DiCorleto and G. M. Chisolm, Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation, Arteriosclerosis 4: 357 (1984).CrossRefGoogle Scholar
  39. 38.
    S. Parthasarathy, U. P. Steinbrecher, J. Barnett, J. L. Witztum and D. Steinberg, Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein, Proc Natl Acad Sci USA 82: 3000 (1985).CrossRefGoogle Scholar
  40. 39.
    U. P. Steinbrecher, J. L. Witztum, S. Parthasarathy and D. Steinberg, Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL, Arteriosclerosis 7: 135 (1987).CrossRefGoogle Scholar
  41. 40.
    W. A. Pryor, J. P. Stanley and E. Blair, Autoxidation of polyunsaturated fatty acid. II. A suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides, Lipids 11: 370 (1976).CrossRefGoogle Scholar
  42. 41.
    N. A. Porter, Mechanisms for autoxidation of polyunsaturated lipids, Acc Chem Res 19: 262 (1986).CrossRefGoogle Scholar
  43. 42.
    H. Zhang. K. H. Jones, W. B. Davis, R. L. Whisler, R. V. Panganamala and D. G. Cornwell, Heterogeneity in lipid peroxides: cellular arachidonic acid metabolism and DNA synthesis, in: “Pharmacologic Effects of Lipids,” Vol. III, J. J. Kabara, ed., Am. Oil Chemists’ Soc., Champaign, Il. (in press).Google Scholar
  44. 43.
    P. H. Gale and R. W. Egan, Prostaglandin endoperoxide synthase-catalyzed oxidation reactions, in: “Free Radicals in Biology,” Vol. VI, W. A. Pryor, ed., Academic Press, New York (1984).Google Scholar
  45. 44.
    W. E. M. Lands, R. J. Kulmacz and P. J. Marshall, Lipid peroxide actions in the regulation of prostaglandin biosynthesis, in: “Free Radicals in Biology,” Vol. VI,. W. A. Pryor, ed., Academic Press, New York (1984).CrossRefGoogle Scholar
  46. 45.
    J. L. Humes, E. E. Opas, M. Galavage, D. Soderman and R. J. Bonney, Regulation of macrophage eicosanoid production of hydroperoxy-and hydroxy-eicosatetraenoic acids, Biochem J. 233: 199 (1986).CrossRefGoogle Scholar
  47. 46.
    B. Mayer, R. Moser, H. Gleispach and W. R. Kukovetz, Possible inhibitory function of endogenous 15-hydroperoxyeicosatetraenoic acid on prostacyclin formation in bovine aortic endothelial cells, Biochim Biophys Acta 875: 641 (1986).CrossRefGoogle Scholar
  48. 47.
    H. Zhang, H. Kaseki, W. B. Davis, R. L. Whisler and D. G. Cornwell, Mechanisms for the stimulation of prostanoid synthesis by cyclosporine A and bacterial lipopolysaccharide, Transplantation (in press).Google Scholar
  49. 48.
    N. Morisaki, H. Sprecher, G. E. Milo and D. G. Cornwell, Fatty acid specificity in the inhibition of cell proliferation and its relationship to lipid peroxidation and prostaglandin biosynthesis, Lipids 17: 893 (1982).CrossRefGoogle Scholar
  50. 49.
    M. A. Warso and W. E. M. Lands, Presence of lipid hydro-peroxide in human plasma, J Clin Invest. 75: 667 (1985).CrossRefGoogle Scholar
  51. 50.
    J. L. Lessard, Two monoclonal antibodies to actin: one muscle selective and one generally reactive, Cell Motility Cytoskeleton 10: 349 (1988).CrossRefGoogle Scholar
  52. 51.
    K. H. Jones and J. A. Senft, An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide,J Histochem. Cytochem 33: 77 (1985).CrossRefGoogle Scholar
  53. 52.
    J. S. Miller, V. C. Gavino, G. A. Ackerman, H. M. Sharma, G. E. Milo, J. C. Geer and D. G. Cornwell, Triglycerides, lipid droplets, and lysosomes in aorta smooth muscle cells during the control of cell proliferation with polyunsaturated fatty acids and vitamin E, Lab Invest 42: 495 (1980).Google Scholar
  54. 53.
    V. C. Gavino, G. E. Milo and D. G. Cornwell, Image analysis for the automated estimation of clonal growth and its application to the growth of smooth muscle cells, Cell Tissue Kinet 15: 225 (1982).PubMedGoogle Scholar
  55. 54.
    N. Morisaki, T. Kanzaki, N. Motoyama, Y. Sato and S. Yoshida, Cell cycle-dependent inhibition of DNA synthesis by prostaglandin I2 in cultured rabbit aortic smooth muscle cells, Atherosclerosis 71: 165 (1988).CrossRefGoogle Scholar
  56. 55.
    N. Morisaki, T. Kanzaki, Y. Sato and S. Yoshida, Lack of inhibition of DNA synthesis by prostaglandin I2 in cultured intimal smooth muscle cells from rabbits, Atherosclerosis 73: 67 (1988).CrossRefGoogle Scholar
  57. 56.
    J. R. Hessler, A. L. Robertson and G. M. Chisolm, LDLinduced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture, Atherosclerosis 32: 213 (1979).CrossRefGoogle Scholar
  58. 57.
    T. Henriksen, S. A. Evensen and B. Carlander, Injury to human endothelial cells in culture induced by low density lipoproteins, Scand J Clin. Lab Invest. 39: 361 (1979).CrossRefGoogle Scholar
  59. 58.
    B. G. Brown, R. Mahley and G. Assman, Swine aortic smooth muscle in tissue culture: some effects of purified swine lipoproteins on cell growth and morphology, Circ Res 39: 415 (1976).Google Scholar
  60. 59.
    K. Fischer-Dzoga, R. A. Fraser and R. W. Wissler, Stimulation of proliferation in stationary primary cultures of monkey and rabbit aortic smooth muscle cells. I. Effects of lipoprotein fractions of hyperlipemic serum and lymph, Exp Mol Pathol 24: 346 (1976).PubMedGoogle Scholar
  61. 60.
    D. L. Layman, B. L. Jelen and D. R. Illingworth, Inability of serum from abetalipoproteinemic subjects to stimulate proliferation of human smooth muscle cells and dermal fibroblasts in vitro, Proc Natl Acad USA 77: 1511 (1980).CrossRefGoogle Scholar
  62. 61.
    J. P. Tauber, J. Cheng and D. Gospodarowicz, Effects of high and low density lipoproteins on proliferation of cultured bovine vascular endothelial cells, J Clin Invest 66: 696 (1980).CrossRefGoogle Scholar
  63. 62.
    D. G. Cornwell and R. V. Panganamala, Atherosclerosis: an intracellular deficiency in essential fatty acids, Prog Lipid Res 20: 365 (1981).CrossRefGoogle Scholar
  64. 63.
    D. Steinberg, Metabolism of lipoproteins and their role in the pathogenesis of atherosclerosis, Atherosclerosis Rev 18: 1 (1988).Google Scholar
  65. 64.
    M. L. Scott, Vitamin E, in: “Handbook of Lipid Research. 2. The Fat-Soluble Vitamins,” H. F. DeLuca, ed., Plenum Press, New York (1978).Google Scholar
  66. 65.
    P. M. Farrell, Deficiency states, pharmacological effects, and nutrient requirements, in: “Vitamin E, A Comprehensive Treatise,” L. J. Machlin, ed., Marcel Dekker, Inc., New York (1980).Google Scholar
  67. 66.
    G. Tornling, G. Unge, L. Skoog, A. Ljunggvist, S. Carlsson and J. Adolfsson, Proliferative activity of myocardial capillary wall cells in dipyridamole-treated rats, Cardiovascular Res 12: 692 (1978).CrossRefGoogle Scholar
  68. 67.
    C. Arnander, G. Jurell, G. Tornling and G. Unge, Effect of dipyridamole on the survival of experimental critical skin flaps, Scand J Plast Reconstruct Surq 13:261 (1979)CrossRefGoogle Scholar
  69. 68.
    A. Dembinska-Kiee, W. Rucker and P. S. Schönhöfer, Effects of dipyridamole in experimental atherosclerosis, Atherosclerosis 33: 315 (1979).CrossRefGoogle Scholar
  70. 69.
    A. Dembinska-Kieè, W. Rucker and P. S. Schönhöfer, Effects of dipyridamole in vivo on ATP and cAMP content in platelets and arterial walls and on atherosclerotic plaque formation, Naunyn-Schmiedeberq’s Arch Pharmacol 309: 59 (1979).Google Scholar
  71. 70.
    J. K. Koster, Jr., A. F. Tryka, P. H’Doubler and J. J. Collins, Jr., The effect of low-dose aspirin and dipyridamole upon atherosclerosis in the rabbit, Artery 9: 405 (1981).Google Scholar
  72. 71.
    W. Hollander, b. Kirkpatrick, J. Paddock, M. Colombo, S. Nagraj and S. Prusty, Studies on the progression and regression of coronary and peripheral atherosclerosis in the cynomolgus monkey. I. Effects of dipyridamole and aspirin, Exp Mol Pathol 30: 55 (1979).Google Scholar
  73. 72.
    P. Hilgard, Blood platelets and tumor dissemination in: “Interaction of Platelets and Tumor Cells,” G. A. Jamieson, Alan R. Liss, Inc., New York (1982).Google Scholar
  74. 73.
    K. V. Honn, R. S. Bockman and L. J. Marnett, Prostaglandins and Cancer: a review of tumor initiation through tumor metastasis, Prostaglandins 21: 833 (1981).CrossRefGoogle Scholar
  75. 74.
    F. Hirahara and S. Kimura, Effects of different dietary oil levels and E/PUFA ratio on tocopherol contents and lipid peroxidative values in serum and tissues of rats, in: “Clinical and Nutritional Aspects of Vitamin E,” O. Hayaishi and M. Mino, eds., Elsevier, Amsterdam (1987).Google Scholar
  76. 75.
    C. W. Karpen, A. J. Merola, R. W. Trewyn, D. G. Cornwell and R. V. Panganamala, Modulation of platelet thromboxane A2 and arterial prostacyclin by dietary vitamin E, Prostaglandins 22: 651 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • David G. Cornwell
    • 1
  • Hanfang Zhang
    • 1
  • W. Bruce Davis
    • 1
  • Ronald L. Whisler
    • 1
  • Rao V. Panganamala
    • 1
  1. 1.Department of Physiological Chemistry and Internal MedicineThe Ohio State UniversityColumbusUSA

Personalised recommendations