Methods of Measuring Lipid Peroxidation in Biological Systems: An Overview

  • Kevin H. Cheeseman
Part of the NATO ASI Series book series (NSSA, volume 189)


Lipid peroxidation is an extremely complicated process, especially in biological systems where one is dealing with mixtures of different lipids in matrices also containing proteins, carbohydrates, nucleic acids and catalytically-active enzymes and trace metals. With regard to measuring lipid peroxidation, the complexity of the process may be viewed by an optimist as presenting the investigator with a large number of opportunities: it is a multi-stage process and each stage can be investigated by at least one technique. The view of the pessimist, or perhaps realist, would be that the complexity of lipid peroxidation is a problem, in that no single assay method can fully describe what is happening or has happened in a system undergoing lipid peroxidation. In considering the large range of assay methods concerned with measuring lipid peroxidation, it is readily obvious that some are straightforward to perform, others tedious; some are more sensitive than others, some more prone to interference; some measure end-products, some measure unstable intermediates, and some measure specific identified compounds whilst others measure poorly characterised entities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. E. May and P. B. McCay, Reduced triphosphopyridine nucleotide oxidase-catalysed alterations of membrane phospholipids, J.Biol. Chem. 243: 2288 (1968).Google Scholar
  2. 2.
    R. Le Page, K. H. Cheeseman, N. Osman and T. F. Slater, Lipid Peroxidation in purified plasma membrane fractions of rat liver in relation to the hepatotoxicity of carbon tetrachloride, Cell Biochem. Function6: 87 (1988).Google Scholar
  3. 3.
    P. Hochstein and L. Ernster, ADP-activated lipid peroxidation coupled to the TPNH-oxidase system of microsomes, Biochem. Biophys. Res. Commun. 12: 388 (1963).CrossRefGoogle Scholar
  4. 4.
    P. Hochstein, K. Nordenbrand and L. Ernster, Evidence for the involvement of iron in the ADP-activated peroxidation in lipids in microsomes and mitochondria, Biochem. Biophys. Res. Commun. 14: 323 (1964).CrossRefGoogle Scholar
  5. 5.
    G. W. Burton, K. H. Cheeseman, T. Doba, K. U. Ingold and T. F. Slater, Vitamin E as an antioxidant in vitro and in vivo, in “Biology of Vitamin E”, Pitman Books, London (1983).Google Scholar
  6. 6.
    E. Niki, Antioxidants in relation to lipid peroxidation, Chem. Phys. Lipids 44: 227 (1987).CrossRefGoogle Scholar
  7. 7.
    K. H. Cheeseman, M. M. Collins, K. P. Proudfoot, T. F. Slater, G. W. Burton, A. C. Webb and K. U. Ingold, Studies on lipid peroxidation in normal and tumour tissue. The Novikoff rat liver tumour, Biochem. J. 235: 507 (1986).PubMedGoogle Scholar
  8. 8.
    H. De Groot and T. Noll, The role of physiological oxygen partial pressures in lipid peroxidation. Theoretical considerations and experimental evidence, Chem. Phys. Lipids 44: 209 (1987).CrossRefGoogle Scholar
  9. 9.
    T. Noll, H. De Groot and P. Wissemann, A computer-supported oxystat system maintaining steady-state 02 partial pressures and simultaneously monitoring 02 uptake in biological systems. Biochem. J. 236: 765 (1986).CrossRefGoogle Scholar
  10. 10.
    M. J. Davies, Applications of electron spin resonance spectroscopy to the identification of radicals produced during lipid peroxidation, Chem. Phys. Lipids 44: 149 (1988).CrossRefGoogle Scholar
  11. 11.
    K. S. Rao and R. O Recknagel, Early onset of lipoperoxidation in rat liver after CC14 administration, Exp. Molec. Pathol. 9: 271 (1968).CrossRefGoogle Scholar
  12. 12.
    C. J. Reddrop, K. H. Cheeseman and T. F. Slater, Correlations between common tests for assessment of liver damage: indices of the hepatoprotective activity of promethazine in carbon tetrachloride hepatotoxicity, Cell. Biochem. Function 1: 55 (1983).CrossRefGoogle Scholar
  13. 13.
    F. P. Corongiu and A. Milia, An improved and simple method for determining diene conjugation in autoxidized polyunsaturated fatty acids, Chem. Biol. Interact. 44: 289 (1983).CrossRefGoogle Scholar
  14. 14.
    F. P. Corongiu, G. Poli, M. U. Dianzani, K. H. Cheeseman and T. F. Slater, Lipid peroxidation and molecular damage to polyunsaturated fatty acids in rat liver. Chem. Biol. Interact. 59: 147 (1986).CrossRefGoogle Scholar
  15. 15.
    M. Hicks and J. Gebicki, A spectrophotometric method for the determination of lipid hydroperoxides, Anal. Biochem, 99: 249 (1979).Google Scholar
  16. 16.
    J. A. Buege and S. D. Aust, Microsomal Lipid Peroxidation, Methods Enzymol. 52: 302 (1978).CrossRefGoogle Scholar
  17. 17.
    S. M. Thomas, W. Jessup, Jan. M. Gebicki and R. T. Dean, A continuous-flow automated assay for iodometric estimation of hydroperoxides, Anal. Biochem. 176 (1989) In press.CrossRefGoogle Scholar
  18. 18.
    R. L. Heath and A. L. Tappel, A new sensitive assay for the measurement of hydroperoxides, Anal. Biochem. 75: 184 (1976)Google Scholar
  19. 19.
    R. Cathcart, E. Schwiers and B. N. Ames, Detection of picomole levels of lipid hydroperoxides using a dichlorofluoroscein fluorescent assay, Methods. Enzymol. 105: 352 (1984).CrossRefGoogle Scholar
  20. 20.
    H. Ohkawa, N. Ohishi and K. Yagi, Reaction of linoleic and hydro-peroxide with thiobarbituric acid, J. Lipid. Res. 19: 1053 (1978)PubMedGoogle Scholar
  21. 21.
    H. Ohkawa, N. Ohishi and K. Yagi, Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem. 95: 351 (1978).Google Scholar
  22. 22.
    K. Yagi, Assay for blood plasma or serum, Methods Enzymol. 105: 328 (1984).CrossRefGoogle Scholar
  23. 23.
    K. Yagi, Lipid peroxides and human diseases, Chem. Phys. Lipids 45: 337 (1987).CrossRefGoogle Scholar
  24. 24.
    T Iwaoka and I Tabata, Chemiluminescent assay of lipid peroxide in plasma using cytochrome c peptide, FEBS Lett. 178: 47 (1984).CrossRefGoogle Scholar
  25. 25.
    K. Belghmi, J-C. Nicolas and A. Crastes de Paulet, Chemiluminescent assay of lipid peroxides, J. Biolum. Chemilum. 2: 113 (1988).CrossRefGoogle Scholar
  26. 26.
    Y. Yamamoto, M. H. Brodsky, J. C. Baker and B N Ames, Detection and characterisation of lipid hydroperoxides at picomole levels by high performance liquid chromatography, Anal. Biochem. 160: 7 (1987).Google Scholar
  27. 27.
    T. Miyazawa, T. Fujimoto and T. Kaneda, Detection of picomole levels of lipid hydroperoxides by a chemiluminescent assay, Agric. Biol. Chem. 51: 2569 (1987).Google Scholar
  28. 28.
    A. Boveris, E. Cadenas and B. Chance, Ultra-weak chemiluminescence: a sensitive assay for oxidative radical reactions, Fed. Proc. 40: 195 (1981).Google Scholar
  29. 29.
    E. Cadenas, M. Ginsberg, U. Rabe and H. Sies, Estimation of ?- tocopherol antioxidant activity in microsomal lipid peroxidation as detected by low-level chemiluminescence, Biochem. J. 223: 755 (1984).CrossRefGoogle Scholar
  30. 30.
    H. Esterbauer, Aldehydic products of lipid peroxidation, in “Free radicals, Lipid Peroxidation and Cancer”, D. C. H. McBrien and T. F. Slater, eds., Academic Press, London (1982).Google Scholar
  31. 31.
    A. Benedetti, M. Comporti and H. Esterbauer, Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids, Biochim. Biophys. Acta 620: 281 (1980).CrossRefGoogle Scholar
  32. 32.
    H. Esterbauer, K. H. Cheeseman, M. U. Dianzani, G. Poli and T. F. Slater, Separation and characterisation of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes, Biochem. J. 208: 129 (1982).CrossRefGoogle Scholar
  33. 33.
    G. Poli, M. U. Dianzani, K. H. Cheeseman, T. F. Slater, J. Lang and H. Esterbauer, Separation and characterisation of the aldehydic products of lipid peroxidation stimulated by carbon tetrachloride or ADP-iron in isolated rat hepatocytes and rat liver microsomal suspensions. Biochem. J. 227: 629 (1985).CrossRefGoogle Scholar
  34. 34.
    J. Lang, C. Celotto and H. Esterbauer, Quantitative determination of the lipid peroxidation product 4-hydroxynonenal by high performance liquid chromatography, Anal. Biochem. 150: 369 (1985)Google Scholar
  35. 35.
    A Pompella, E. Maellaro, A. F. Casini, M. Ferrali, L. Ciccoli and M. Comporti, Measurement of lipid peroxidation in vivo: a comparison of different procedures, Lipids 22: 206 (1987).CrossRefGoogle Scholar
  36. 36.
    A. Benedetti, R. Fulceri, M. Ferrali, L. Ciccoli, H. Esterbauer and M. Comporti, Detection of carbonyl functions in phospholipids of liver microsomes in CC14- and BrCC13-poisoned rats. Biochim. Biophys. Acta 712: 628 (1982).CrossRefGoogle Scholar
  37. 37.
    A. Benedetti, A. Pompella, R. Fulceri, A. Romani and M. Comporti, Detection of 4-hydroxyonenal and other lipid peroxidation products in the liver of bromobenzene-poisoned mice. Biochim. Biophys. Acta 876: 658 (1986).CrossRefGoogle Scholar
  38. 38.
    A. Pompella, E. Maellaro, A. F. Casini and Mario Comporti, Histochemical detection of lipid peroxidation in the liver bromobenzenepoisoned mice, Am. J. Pathol. 129: 295 (1987).PubMedPubMedCentralGoogle Scholar
  39. 39.
    K. Yoshino, M. Sano, M. Fujita and I. Tornita, Formation of aliphatic aldehydes in rat plasma and liver due to vitamin E deficiencey, Chem. Pharm. Bull. 34: 5184 (1986).CrossRefGoogle Scholar
  40. 40.
    F. J. G. M. Van Kuijk, D. W. Thomas, R. J. Stevens and E. A. Dratz, Occurrence of 4-hydroxyalkenals in rat tissues determined as pentafluorobenzyl oxine derivatives by gas chromatography-mass spectroscopy. Biochem. Biophys. Res. Commun. 139: 144 (1986).CrossRefGoogle Scholar
  41. 41.
    T. F. Slater and K. H. Cheeseman, Lipid peroxidation in “Prostaglandins and Related Substances, A Practical Approach”, C. Benedetto S. Nigam, R. McDonald-Gibson and T. F. Slater, IRL Press, Oxford, 243–258 (1987).Google Scholar
  42. 42.
    H. Esterbauer, J. Lang, S Zadravec and T. F. Slater, Detection of malonaldehyde by high-performance liquid chromatography, Methods Enzymol. 105: 319 (1984).CrossRefGoogle Scholar
  43. 43.
    C. A. Riely, G. Cohen and M. Lieberman, Ethane evolution: a new index of lipid peroxidation, Science 183: 208 (1974).CrossRefGoogle Scholar
  44. 44.
    G. D. Lawrence and G. Cohen, Concentrating ethane from breath to monitor lipid peroxidation in vivo, Methods Enzymol. 105: 305 (1984).CrossRefGoogle Scholar
  45. 45.
    A. Muller and H. Sies, Assay of ethane and pentane from isolated organs and cells, Methods Enzymol. 105: 311 (1984).CrossRefGoogle Scholar
  46. 46.
    C. J. Dillard and A. L. Tappel, Fluorescent damage products of lipid peroxidation, Methods Enzymol. 105: 337 (1984).CrossRefGoogle Scholar
  47. 47.
    K. Kikugawa and M. Beppu, Involvement of lipid oxidation products in the formation of fluorescent and cross-linked proteins, Chem. Phys. Lipids 44: 279 (1987).CrossRefGoogle Scholar
  48. 48.
    M. Tsuchida, T. Miura and K. Aibara, Lipofuscin and lipofuscin-like substances, Chem. Phys. Lipids 44: 297 (1987).CrossRefGoogle Scholar
  49. 49.
    H. Esterbauer and K. H. Cheeseman (Eds) Lipid Peroxidation: Biochemical and Biophysical Aspects. Chem. Phys. Lipids 44 (1987).Google Scholar
  50. 50.
    H. Esterbauer and K. H. Cheeseman (Eds) Lipid Peroxidation: Pathological Implications. Chem. Phys. Lipids 45 (1987).Google Scholar
  51. 51.
    H. Esterbauer and K. H. Cheeseman, Determination of aldehydic lipid peroxidation products with special attention to malonaldehyde and 4-hydroxynonenal, Methods in Enzymol. In press (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Kevin H. Cheeseman
    • 1
  1. 1.Department of Biology and BiochemistryBrunel UniversityUxbridgeEngland

Personalised recommendations