Advertisement

Degradation of Membrane Phospholipids by a Direct Nucleophilic Action of Superoxide Anion

  • C. Deby
  • M. Boes
  • J. Pincemail
  • J. Bourdon-Neuray
  • G. Deby-Dupont
Part of the NATO ASI Series book series (NSSA, volume 189)

Abstract

At the beginning of the eighties, two contradictory currents of opinions appeared in the literature, about superoxide anion reactivity. For many physicochemists, O2ָ could be considered as a chemical curiosity, presenting only weak reactivity and being thus a “relatively innocuous” species (1). But for biologists and biochemists, O2ָ continued to be regarded, following McCord and Fridovich (2), as an important intermediate, which could be dangerous for aerobic organisms. Recent works, establishing the protective role of superoxide dismutase in grafts and transplantations, as well as in ischemia-reperfusion syndrome, afforded a strong support to that point of view (3–6). However, it was well established that 02ָ cannot act through its oxidant properties (7,8).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. T. Sawyer and J.S. Valentine, How super is superoxide ? Acc. Chem. Res. 14: 393 (1981)CrossRefGoogle Scholar
  2. 2.
    J. M. McCord, and I. Fridovich. Superoxide dismutase. J. Biol. Chem. 244: 6049 (1969).PubMedGoogle Scholar
  3. 3.
    J. Bergsland, L. Lo Balsamo, P. Lajos, and B. Moorkerjee, Post-anoxic hemodynamic performances. The effect of allopurinol and superoxide dismutase/catalase. Transpl. Proc. 19: 4165 (1987).Google Scholar
  4. 4.
    M. L. Myers, R. Bolli, R.F. Lekich, C.J. Hartley, and R. Roberts,Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia. Circulation 72: 915 (1985).CrossRefGoogle Scholar
  5. 5.
    S. L. Atalla, L. H. Toledo-Pereyra, G. H. McKenzie and J. P. Cederna., Influence of oxygen-derived free radical scavengers on ischemic livers. Transplantation 40: 584 (1985).CrossRefGoogle Scholar
  6. 6.
    R. J. Korthuis and D. N. Granger. Ischemia-reperfusion injury: role of oxygen-derived free radicals, in:“Physiology of oxygen radicals” A. Taylor, S. Matalon, P. Ward. ed., Amer. Physiol. Soc., p 217 (1986).Google Scholar
  7. 7.
    J.A. Fee., Is superoxide toxic ? in:“Biological and clinical aspects of superoxide and superoxide dismutase’, J. V. Bannister, ed., Elsevier-North Holland, pp 41 (1980).Google Scholar
  8. 8.
    D. T. Sawyer, M. J. Gibian, M. M. Morrison, and E.T. Seo., On the chemical reactivity of superoxide anion, J Amer. Chem. Soc. 100: 627 (1978).CrossRefGoogle Scholar
  9. 9.
    B. Halliwell, and Gutteridge J. M. C., Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1 (1984).CrossRefGoogle Scholar
  10. 10.
    I. Fridovich, Biological effects of the superoxide radical. Arch. Biochem. Biophys.S 247: 1 (1984).Google Scholar
  11. 11.
    R. Dietz, A. E. S. Forno, P. E. Larcombe, and M. E. Peover. Nucleophilic reactions of electrogenerated superoxide ion. J. Chem. Soc. B: 816 (1970).Google Scholar
  12. 12.
    J. San Filippo, L. J. Romano, C. I. Chem, and J. S. Valentine, Cleavage of esters by superoxide. J. Org. Chem41: 586 (1976).CrossRefGoogle Scholar
  13. 13.
    M. J. Gibian, D. T. Sawyer, T; Ungermann, R. Tangpoonpholvivat, and M. M. Morrisen. Reactivity of superoxide with carbonyl compounds in aprotic solvents. J. Amer. Chem. Soc. 101: 640 (1979).Google Scholar
  14. 14.
    W. G. Niehaus, A proposed role of superoxide anion as a biological nucleophile in the deesterification of phospholipids. Bioorganic Chem7: 77 (1978).CrossRefGoogle Scholar
  15. 15.
    J. S. Valentine, and A. B. Curtis, A convenient preparation of solutions of superoxide anion and the reaction of superoxide anion with a copper (II) complex. J. Am. Chem Soc. 97: 224 (1975).CrossRefGoogle Scholar
  16. 16.
    T. L. Steck, and J.A. Kant, Preparation of impermeable ghosts and inside out vesicles from human erythrocyte membranes. Meth. Enzymol31: 172 (1974).CrossRefGoogle Scholar
  17. 17.
    R. E. Lynch, and I. Fridovich. Effects of superoxide on the erythrocyte membrane. J. Biol. Chem. 253: 1838 (1978).Google Scholar
  18. 18.
    D. L. Maricle and W. G. Hogdson, Reduction of oxygen to superoxide anion in aprotic solvents. Anals. Chem37: 1562 (1965).CrossRefGoogle Scholar
  19. 19.
    P. F. Knowles, J. F. Gibson, F. M. Pick, and R. C. Bray, Electron-spin resonance evidence for enzymic reduction of oxygen to a free radical, the superoxide ion. Biochem. J. 111: 53 (1969).CrossRefGoogle Scholar
  20. 20.
    M. J. Green, and H. A. O. Hill, Chemistry of dioxygen. Methods in Enzymol105: 3 (1984).CrossRefGoogle Scholar
  21. 21.
    H. Schenk and J. L. Gellermann, Esterification of fatty acids with diazomethane on small scale. Anal. Chem. 32: 1312 (1960).CrossRefGoogle Scholar
  22. 22.
    F. E. Luddy, R. A. Bradford, S. F. Herb and P. Magidman, A rapid and quantitative procedure for the preparation of methyl esters of butter oil and other fats. J. Amer. Oil. Chem. Soc. 45: 549 (1968).CrossRefGoogle Scholar
  23. 23.
    J. Folch, M. Lees and G. H. S. Stanley, A simple method for the isolation and purification of total lipid in animal tissue. J. Biol. Chem. 266: 497 (1957).Google Scholar
  24. 24.
    J. A. Buege and S. D. Aust, Microsomal lipid peroxidation. Methods Enzymol. 52: 302 (1978).CrossRefGoogle Scholar
  25. 25.
    C. Deby, G. Deby-Dupont, P. Hans, J. Pincemail, J. Neuray and R. Goutier, Complementary procedures for pro-and antilipoperoxidant activities measurements. Experientia 39: 1113 (1983).CrossRefGoogle Scholar
  26. 26.
    G. H. De Haas, N. M. Postema, W. Nieuwenhuyzen and L.L.M. Van Deenen, Purification and properties of phospholipase A2 from porcine pancreas. Bioch. Biophys. Acta. 159: 103 (1968).Google Scholar
  27. 27.
    J. A. Fee and P. G. Hildebrand, On the development of a well-defined source of superoxide ion for studies with biological systems. FEBS Lett. 39: 79 (1974).CrossRefGoogle Scholar
  28. 28.
    G. M. Rosen and B. A. Freeman, Detection of superoxide generated by endothelial cells. Proc. Natl. Acad. Sci. USA81: 7269 (1984).CrossRefGoogle Scholar
  29. 29.
    G. L. Babior, R. E. Rosin, B. J. McMurrich, W. A. Peters and B. M. Babior, Arrangement of the respiratory burst oxidase in the plasma membrane of the neutrophil. J. Clin. Invest67: 1724 (1981).CrossRefGoogle Scholar
  30. 30.
    D. Roos, C. M. Eckmann, M. Yazdanbakhsh, M. N. Hamers and M. De Boer, Excretion of supero:ide by phagocytes measured with cytochrome C entrapped in resealed erythrocyte ghosts. J. Biol. Chem. 259: 1770 (1984).PubMedGoogle Scholar
  31. 31.
    H. C. Birn boim and M. Kanabus-Kaminska, The production of DNA strand breaks in human leukocytes by superoxide anion may involve a metabolic process.Proc. Natl.Acad. Sci. USA 82: 6820 (1985).CrossRefGoogle Scholar
  32. 32.
    A. C. Bagley, J. Krall and R. E. Lynch, Superoxide mediates the toxicity of paraquat for chinese hamster ovary cells. Proc. Natl Acad. Sci. USA83: 3189 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • C. Deby
    • 1
  • M. Boes
    • 1
  • J. Pincemail
    • 1
  • J. Bourdon-Neuray
    • 1
  • G. Deby-Dupont
    • 1
  1. 1.Laboratoire de Biochimie et de RadiobiologieUniversité de Liège, Institut de ChimieLiège IBelgium

Personalised recommendations