Advertisement

Radical Mechanisms in Fatty Acid and Lipid Peroxidation

  • Wolf Bors
  • Michael Erben-Russ
  • Christa Michel
  • Manfred Saran
Part of the NATO ASI Series book series (NSSA, volume 189)

Abstract

Autoxidation of fatty acid moieties of membrane lipids is a process which is generally considered to involve radical chain reactions1–3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.A. Vladimirov, V.I. Olenev, T.B. Suslova, and Z.P. Cheremisina, Lipid peroxidation in mitochondrial membrane, Adv. Lipid Res. 17: 173 (1980).CrossRefGoogle Scholar
  2. 2.
    W. Grosch, Neuere Vorstellungen über die Lipidoxidation, Lebensmittelchem. Gerichtl. Chem. 38:81 (1984).Google Scholar
  3. 3.
    A. Sevanian, and P. Hochstein, Mechanisms and consequences of lipid peroxidation in biological systems, Ann. Rev. Nutr. 5: 365 (1985).CrossRefGoogle Scholar
  4. 4.
    L.K. Patterson, and K. Hasegawa, Pulse radiolysis studies in model lipid systems. The influence of aggregation on kinetic behavior of OH induced radicals in aqueous sodium linoleate, Ber. Bunsen-ges. Physik. Chem. 82:951 (1978).CrossRefGoogle Scholar
  5. 5.
    W. Bors, C. Michel, and M. Saran, Superoxide anions do not react with hydroperoxides, FEBS-Lett. 107: 403 (1979).Google Scholar
  6. 6.
    A.E. Johnston, K.T. Zilch, E. Selke, and H.J. Dutton, Analysis of fat acid oxidation products by countercurrent distribution methods. V. Low temperature decomposition of methyl linoleate hydroperoxide, J. Am. Oil Chem. Soc. 38: 367 (1961).Google Scholar
  7. 7.
    E. Bascetta, F.D. Gunstone, and J.C. Walton, An ESR study of fatty acids and esters. I. Hydrogen abstraction from olefinic and acetylenic long chain esters, JCS, Perkin II 603 (1983).Google Scholar
  8. 8.
    E. Bascetta, F.D. Gunstone, and J.C. Walton, An ESR study of fatty acids and esters. H. Hydrogen abstraction from saturated acids and their derivatives, JCS, Perkin II 401 (1984).Google Scholar
  9. 9.
    M.J. Davies, Applications of ESR spectroscopy to the identification of radicals produced during lipid peroxidation, Chem. Phys. Lipids 44:149 (1987).Google Scholar
  10. 10.
    G.R. Buettner, Spin trapping: ESR parameters of spin adducts, Free Radic. Biol. Med. 3: 259 (1987).Google Scholar
  11. 11.
    A.S.W. Li, K.B. Cummings, H.P. Roethling, G.R. Buettner and C.F. Chignell, A spin-trapping database implemented on the IBM PC/AT, J. Magn. Reson. in press.Google Scholar
  12. 12.
    G.W. Burton, and K.U. Ingold, Vitamin E: application of the principles of physical organic chemistry to the exploration of its structure and function, Accts. Chem. Res. 19: 194 (1986).CrossRefGoogle Scholar
  13. 13.
    E. Niki, A. Kawakami, Y. Yamamoto, and Y. Kamiya, Oxidation of lipids VIII. Synergistic inhibition of oxidation of phosphatidylcholine liposomes in aqueous dispersion by Vitamin E and C, Bull. Chem. Soc. Japan 58: 1971 (1985).CrossRefGoogle Scholar
  14. 14.
    A. Pohlman, and T. Mill, Free radical oxidations in water: decomposition of azoinitiators and oxidation of p-cresol and E-isopropylphenol, J. Orq. Chem. 48: 2133 (1983).CrossRefGoogle Scholar
  15. 15.
    L.R.C. Barclay, S.J. Locke, J.M. MacNeil, and J. Vankessel, Autoxidation of micelles and model membranes. Quantitative kinetic measurements can be made by using either water-soluble or lipid-soluble initiators with water-soluble or lipid-soluble chain-breaking antioxidants, J. Am. Chem. Soc. 106: 2479 (1984).CrossRefGoogle Scholar
  16. 16.
    C.E. Boozer, G.S. Hamilton, C.E.Hamilton, and J.N. Sen, Air oxidation of hydrocarbons. H. The stoichiometry and fate of inhibitors in benzene and chlorobenzene, J. Am. C.em. Soc. 77: 3233 (1955).CrossRefGoogle Scholar
  17. 17.
    T.W. Campbell, and G.M. Coppinger, The reaction of tert-butylhydroperoxide with some phenols, J. Am. Chem. Soc. 74: 1469 (1952).CrossRefGoogle Scholar
  18. 18.
    M. Erben-Russ, W. Bors, and M. Saran, Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study, Int. J. Radiat. Biol. 52: 393 (1987).Google Scholar
  19. 19.
    N.A. Porter, B.A. Weber, H. Weenen, and J.A. Khan, Autoxidation of polyunsaturated lipids. Factors controlling the stereochemistry of product hydroperoxides, J. Am. Chem. Soc. 102: 5597 (1980).CrossRefGoogle Scholar
  20. 20.
    E. Niki, T. Saito, A. Kawakami, and Y. Kamiya, Inhibition of the oxidation of methyl linoleate in solution by vitamin E and vitamin C, J. Biol. Chem. 259: 4177 (1984).PubMedGoogle Scholar
  21. 21.
    K. Hasegawa, and L.K. Patterson, Pulse radiolysis studies in model lipid systems: formation and behavior of peroxy radicals in fatty acids, Photochem. Photobiol. 28:817 (1978).CrossRefGoogle Scholar
  22. 22.
    M.G.J. Heijman, A.J.P. Heitzman, H. Nauta, and Y.K. Levine, A pulse radiolysis study of the reactions of OH·/O- with linoleic acid in oxygen-free aqueous solution, Radiat. Phys. Chem. 26:83 (1985).CrossRefGoogle Scholar
  23. 23.
    M. Erben-Russ, C. Michel, W. Bors, and M. Saran, Absolute rate constants of alkoxyl radical reactions in aqueous solutions, J. Phys. Chem. 91: 2362 (1987).CrossRefGoogle Scholar
  24. 24.
    R.D. Small, J.C. Scaiano, and L.K. Patterson, Radical processes in lipids. A laser photolysis study of tert-butoxy radical reactivity towards fatty acids, Photochem. Photobiol. 29:49 (1979).CrossRefGoogle Scholar
  25. 25.
    M. Erben-Russ, C. Michel, W. Bors, and M. Saran, Determination of sulfite radical (SON) reaction rate constants by means of competition kinetics, Radiat. Environ. Biophys. 26:289 (1987).Google Scholar
  26. 26.
    L.G. Forni, J.E. Packer, T.F. Slater, and R.L. Willson, Reaction of the trichloromethyl and halothane-derived peroxy radicals with unsaturated fatty acids: a pulse radiolysis study, Chem.-Biol. Interactions 45:171 (1983).CrossRefGoogle Scholar
  27. 27.
    B.H.J. Bielski, R.L. Arudi, and M.W. Sutherland, A study of the reactivity of H02/ON with unsaturated fatty acids, J. Biol. Chem. 258: 4759 (1983).PubMedGoogle Scholar
  28. 28.
    F.H. Doleiden, S.R. Fahrenholtz, A.A. Lamola, and A.M. Trozzolo, Reactivity of cholesterol and some fatty acids towards singlet oxygen, Photochem. Photobiol. 20:519 (1974).CrossRefGoogle Scholar
  29. 29.
    H.R. Rawls, and P.J. van Santen, Singlet oxygen: a possible source of the original hydroperoxides in fatty acids, Ann. New York Acad. Sci. 171: 135 (1970).CrossRefGoogle Scholar
  30. 30.
    E.N. Frankel, Chemistry of free radical and singlet oxidation of lipids, Prog. Lipid Res. 23:197 (1985).CrossRefGoogle Scholar
  31. 31.
    G. Minotti, and S.D. Aust, The role of iron in the initiation of lipid peroxidation, Chem. Phys. Lipids 44:191 (1987).CrossRefGoogle Scholar
  32. 32.
    W.H. Koppenol, and J.F. Liebman, The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+), J. Phys. Chem. 88: 99 (1984).CrossRefGoogle Scholar
  33. 33.
    I.I. Ivanov, A relay model of lipid peroxidation in biological membranes, J. Free Radic. Biol. Med. 1: 247 (1985).CrossRefGoogle Scholar
  34. 34.
    W. Bors, M. Erben-Russ, and M. Saran, Fatty acid peroxyl radicals: their generation and reactivities, Bioelectrochem. Bioenerq. 18:37 (1987).CrossRefGoogle Scholar
  35. 35.
    G.E. Adams, and R.L. Willson, Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution, Trans. Faraday Soc. 65:2981 (1969).CrossRefGoogle Scholar
  36. 36.
    N.A. Porter, Mechanism for the autoxidation of polyunsaturated lipids, Accts. Chem. Res. 19: 262 (1986).CrossRefGoogle Scholar
  37. 37.
    H.W.-S. Chan, G. Levett, and J.A. Matthew, Thermal isomerisation of methyl linoleate hydroperoxides. Evidence of molecular oxygen as a leaving group in a radical rearrangement, JCS, Chem. Comm. 1978: 756 (1978).Google Scholar
  38. 38.
    P. Schieberle, W. Grosch, H. Kexel, and H.L. Schmidt, A study of oxygen isotope scrambling in the enzymic and non-enzymic oxidation of linoleic acid, Biochim. Biophys. Acta 666:322 (1981).CrossRefGoogle Scholar
  39. 39.
    P. Schieberle, W. Grosch, Detection of monohydroperoxides with un-conjugated diene systems as minor products of the autoxidation of methyl linoleate, Z. Lebensm. Unters.-Forsch. 173:199 (1981).Google Scholar
  40. 40.
    E.N. Frankel, W.E. Neff, E. Selke, and D. Weisleder, Photosensitized oxidation of methyl linoleate: secondary and volatile thermal decomposition products, Lipids 17: 11 (1982).PubMedGoogle Scholar
  41. 41.
    F. Haslbeck, W. Grosch, Autoxidation of phenyl linoleate and phenyl oleate: HPLC analysis of the major and minor monohydroperoxides as phenyl hydroxystearates, Lipids 18: 706 (1983).PubMedGoogle Scholar
  42. 42.
    P.H. Gale, and R.W. Egan, Prostaglandin endoperoxide synthase-catalyzed oxidation reactions, in:“Free Radicals in Biology,” W.A. pryor, ed, Academic Press, New York, Vol. VI, p.1 (1984).Google Scholar
  43. 43.
    J.A. Howard, and K.U. Ingold, Absolute rate constants for hydrocarbon autoxidation. VI. Alkyl aromatic and olefinic hydrocarbons, Can. J. Chem. 45: 793 (1967).Google Scholar
  44. 44.
    G.A. Russell, Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons. Mechanism of the interaction of peroxy radicals, J. Am. Chem. Soc. 79: 3871 (1957).CrossRefGoogle Scholar
  45. 45.
    E. Cadenas, Oxidative stress and formation of excited species, in: “Oxidative Stress,” H. Sies, ed., Academic Press, London, p. 311 (1986).Google Scholar
  46. 46.
    J.R. Kanofsky, Red chemiluminescence from ram seminal vesicle microsomes: pitfalls in the use of spectrally resolved red chemiluminescence as a test for singlet oxygen in biological systems, photochem. Photobiol. 47:605 (1988).CrossRefGoogle Scholar
  47. 47.
    D. Schulte-Frohlinde, and C. von Sonntag, Radiolysis of DNA and model systems in the presence of oxygen, in:“Oxidative Stress,” H. Sies, ed., Academic Press, London, p.11 (1986).Google Scholar
  48. 48.
    A.R. Brash, A.T. Porter, and R.L. Mass, Investigation of the selectivity of hydrogen abstraction in the non-enzymatic formation of hydroxyeicosatetraenoic acid and leukotrienes by autoxidation, J. Biol. Chem. 260: 4210 (1985).PubMedGoogle Scholar
  49. 49.
    Y. Yamamoto, E. Niki, and Y. Kamiya, Oxidation of lipids. Iii. Oxidation of methyl linoleate in solution, Lipids 17: 870 (1982).PubMedGoogle Scholar
  50. 50.
    A. Sevanian, M.L. Wratten, L.L. McLeod, and E. Kim, Lipid peroxidation and phospholipase A2 activity in liposomes composed of unsaturated phospholipids: a structural basis for enzyme activation, Biochim. Biophys. Acta 961:316 (1988).CrossRefGoogle Scholar
  51. 51.
    H.W. Gardner, and R. Kleiman, Degradation of linoleic acid hydro-peroxides by a cysteine-FeC13 catalyst as a model for similar biochemical reactions. H. Specificity in formation of fatty acid epoxides, Biochim. Biophys. Acta 665:113 (1981).Google Scholar
  52. 52.
    R. Labeque, and L.J. Marnett, 10-Hydroperoxy-8,12-octadecadienoic acid: a diagnostic probe of alkoxyl radical generation in metalhydroperoxide reactions, J. Am. Chem. Soc. 109: 2828 (1987).CrossRefGoogle Scholar
  53. 53.
    W. Bors, C. Michel, and M. Saran, Inhibition of the bleaching of the carotenoid crocin. A rapid test for quantifying antioxidant activity, Biochim. Biophys. Acta 796:312 (1984).CrossRefGoogle Scholar
  54. 54.
    W.E. Neff, and E.N. Frankel, Photosensitized oxidation of methyl linoleate monohydroperoxides: hydroperoxy cyclic peroxides, dihydroperoxides and hydroperoxy-bis-cyclic peroxides, Lipids 19: 925 (1984).CrossRefGoogle Scholar
  55. 55.
    W. Bors, D. Tait, C. Michel, M. Saran, and M. Erben-Russ, Reactions of alkoxyl radicals in aqueous solutions, Israel J. Chem. 24: 17 (1984).Google Scholar
  56. 56.
    V. Madhavan, N.N. Lichtin, and E. Hayon, Electron adducts of acrylic acid and homologues. Spectra, kinetics and protonation reactions. A pulse-radiolytic study, J. Org. Chem. 41:2320 (1976).CrossRefGoogle Scholar
  57. 57.
    M. Saran, D. Tait, W. Bors, and C. Michel, Formation and reactivities of alkoxy radicals, in:“Oxy Radicals and Their Scavenger Systems Vol. I. Molecular Aspects,” G. Cohen, R.A. Greenwald, eds., Elsevier, New York, p.20 (1983).Google Scholar
  58. 58.
    C. Walling, Some aspects of the chemistry of alkoxy radicals, Pure APP1. Chem. 15: 69 (1967).Google Scholar
  59. 59.
    K.U. Ingold, Rate constants for free radical reactions in solutions, in:“Free Radicals,” J.K. Kochi, ed., Wiley-Interscience, New York, Vol. I, p.37 (1973).Google Scholar
  60. 60.
    D.G. Hendry, T. Mill, L. Piszkiewicz, J.A. Howard, and H.K. Eigenman, A critical review of H-atom transfer in the liquid phase: chlorine atom, alkyl trichloromethyl, alkoxy and alkylperoxy radicals, J. Phys. Chem. Ref. Data 3: 937 (1974).CrossRefGoogle Scholar
  61. 61.
    T.A. Dix, and L.J. Marnett, Hematin-catalyzed rearrangement of hydroperoxylinoleic acid to epoxy alcohols via an oxygen rebound, J. Am. Chem. Soc. 105: 7001 (1983).CrossRefGoogle Scholar
  62. 62.
    H.W. Gardner, K. Eskins, G.W. Grams, and G.E. Inglett, Radical addition of linoleic hydroperoxides to alpha-tocopherol or the analogous hydroxy chroman, Lipids 7: 324 (1972).Google Scholar
  63. 63.
    E.N. Frankel, Volatile lipid oxidation products, Prog. Lipid Res. 22:1 (1982).CrossRefGoogle Scholar
  64. 64.
    T. Nakayama, M. Kodama, and C. Nagata, Free radical formation in DNA by lipid peroxidation, Agric. biol. Chem. 48: 571 (1984).Google Scholar
  65. 65.
    W. Grosch, Abbau von Linol-and Linolensäurehydroperoxyden in Gegenwart von Ascorbinsäure. Analyse der flüchtigen Aldehyde, Z. Lebensm. Unters.-Forsch. 163: 4 (1977).CrossRefGoogle Scholar
  66. 66.
    P. Schieberle, B. Tsoukalas, and W. Grosch, Decomposition of linoleic acid hydroperoxides by radicals. I. Structures of products of methyl 13-hydroperoxy-cis,trans-9,11-octadecadienoate, Z. Lebensm. Unters.-Forsch. 168: 448 (1979).Google Scholar
  67. 67.
    F. Ursini, M. Maiorino, and C. Gregolin, The selenoenzyme phospholipid hydroperoxide glutathione peroxidase, Biochim. Biophys. Acta 839:62 (1985).CrossRefGoogle Scholar
  68. 68.
    R. Ladenstein, O. Epp, W. Guenzler, and L. Flohé, Glutathione peroxidase on approval, Life Chem. Rep. 4: 37 (1986).Google Scholar
  69. 69.
    L.K. Patterson, Studies of radiation induced peroxidation in fatty acid micelles, in:“Oxygen and Oxy Radicals in Chemistry and Biology,” M.A.J. Rodgers, E.L. Powers, eds., Academic Press, New York, p.89 (1981).Google Scholar
  70. 70.
    N.A. Porter, L.S. Lehman, B.A. Weber, and K.J. Smith, Unified mechanism for polyunsaturated fatty acid autoxidation. Competition of peroxy radical hydrogen atom abstraction, ß-scission, and cyclization, J. Am. Chem. Soc. 103: 6447 (1981).CrossRefGoogle Scholar
  71. 71.
    W. Bors, C. Michel, and M. Saran, Determination of kinetic parameters of oxygen radicals by competition studies, in:“CRC Handbook of Methods for Oxygen Radical Research,” R.A. Greenwald, ed., CRC Press, Boca Raton, p.181 (1985).Google Scholar
  72. 72.
    T. Doba, G.W. Burton, K.U. Ingold, and M. Matsuo, Alpha-tocopherol decay: lack of effect of oxygen, JCS, Chem. Comm. 461 (1984).Google Scholar
  73. 73.
    W. Bors, Semiquinone and phenoxyl radicals of phenolic antioxidants and model compounds: generation, spectral and kinetic properties, Life Chem. Rep. 3: 16 (1985).Google Scholar
  74. 74.
    E. Niki, Interaction of ascorbate and alpha-tocopherol, Ann. New York Acad. Sci. 498: 186 (1987).CrossRefGoogle Scholar
  75. 75.
    A.P. Griva, and E.T. Denisov, Kinetics of the reactions of 2,4,6-tritert-butylphenoxyl with cumene hydroperoxide, cumylperoxyl radicals and molecular oxygen, Int. J. Chem. Kinet. 5: 869 (1973).CrossRefGoogle Scholar
  76. 76.
    J. Tsuchiya, E. Niki, and Y. Kamiya, Oxidation of lipids. IV. Formation and reaction of chromanoxyl radicals as studied by ESR, Bull. Chem. Soc. Japan 56: 229 (1983).CrossRefGoogle Scholar
  77. J. Winterle, D. Dulin, and T. Mill, Products and stoichiometry of reaction of vitamin E with alkylperoxy radicals, J. Org. Chem. 49:491 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Wolf Bors
    • 1
  • Michael Erben-Russ
    • 1
  • Christa Michel
    • 1
  • Manfred Saran
    • 1
  1. 1.Institut für StrahlenbiologieGSF ForschungszentrumNeuherbergGermany

Personalised recommendations