Spectroscopic Signatures of Floppiness in Molecular Complexes

  • David J. Nesbitt


The challenge of correctly inferring even the qualitative features of the potential energy hypersurface from spectroscopic measurements is heightened dramatically in studies of weakly bound molecular complexes where large amplitude motion is present. This is especially true for data obtained from low temperature, supersonic expansions where Boltzmann distributions limit the range of internally excited states that can be investigated. To stress this point, we present simulated spectra for two model triatomic systems, a “pinwheel” and a “hinge,” with nearly flat potentials that support extremely large amplitude internal rotation and bending, respectively. Even in these highly “floppy” molecular systems, the exact quantum term values can be fitted remarkably well to a standard semirigid, asymmetric top Hamiltonian, but one corresponding to a qualitatively different, vibrationally averaged molecular geometry. These results indicate that simple eigenvalue analysis of jet cooled molecular spectra in the absence of hyperfine resolution may not be sufficiently sensitive to large amplitude angular motion, and that data from a variety of techniques may prove necessary to assess the degree of molecular rigidity.


Potential Energy Surface Molecular Complex Rotational Constant Hydrogen Halide Large Amplitude Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    G. Herzberg, Infrared and Raman Spectra (Van Nostrand Reinhold, New York, 1945).Google Scholar
  2. 2).
    There are several relevant articles in Structure and Dynamics of Weakly Bound Complexes, A. Weber, Ed., Nato Advanced Scientific Institute, Series C 212 (1987).Google Scholar
  3. 3).
    A. C. Legon, D. J. Milien, and S. C. Rogers, Proc. R. Soc. London Ser. A 370, 213 (1980).CrossRefGoogle Scholar
  4. 4).
    W. J. Lafferty, R. D. Suenram and F. J. Lovas, J. Mol. Spectrosc. 123, 434 (1987).CrossRefGoogle Scholar
  5. 5).
    D. J. Nesbitt, Chem. Rev., in press.Google Scholar
  6. 6).
    As was pointed out to the author by Z. Vager, even a complete spectrum of eigenvalues, Ek, can not determine the Hamiltonian uniquely, which can be readily seen by expressing H = k> is any arbitrary but complete, orthonormal set of states.Google Scholar
  7. 7).
    J. K. G. Watson, in Vibrational Spectra and Structure, J. R. Durig, Ed. (Elsevier, New York, 1977).Google Scholar
  8. 8).
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1958).Google Scholar
  9. 9).
    C. M. Lovejoy, D. D. Nelson Jr., and D. J. Nesbitt, J. Chem. Phys. 87, 5621 (1987).CrossRefGoogle Scholar
  10. 10).
    P. R. Bunker and J. M. R. Stone, J. Mol. Spectrosc. 41, 310 (1972).CrossRefGoogle Scholar
  11. 11).
    E. B. Wilson Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (Dover, New York, 1955).Google Scholar
  12. 12).
    A. S. Pine, W. J. Lafferty, and B. J. Howard, J. Chem. Phys. 81, 2939 (1984).CrossRefGoogle Scholar
  13. 13).
    N. Ohashi and A. S. Pine, J. Chem. Phys. 81, 73 (1984).CrossRefGoogle Scholar
  14. 14).
    M. D. Marshall, A. Charo, H. O. Leung, and W. Klemperer, J. Chem. Phys. 83, 4924 (1985).CrossRefGoogle Scholar
  15. 15).
    D. Ray, R. L. Robinson, D.-H. Gwo, and R. J. Saykally, J. Chem. Phys. 84, 1171 (1986).CrossRefGoogle Scholar
  16. 16).
    C. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. 86, 3151 (1987).CrossRefGoogle Scholar
  17. 17).
    C. M. Lovejoy, M. D. Schuder, and D. J. Nesbitt, J. Chem. Phys. 86, 5337 (1987).CrossRefGoogle Scholar
  18. 18).
    C. M. Lovejoy, D. D. Nelson, Jr., and D. J. Nesbitt, J. Chem. Phys., submitted.Google Scholar
  19. 19).
    C. M. Lovejoy, M. D. Schuder, and D. J. Nesbitt, J. Chem. Phys. 85, 4890 (1986).CrossRefGoogle Scholar
  20. 20).
    C. M. Lovejoy, M. D. Schuder, and D. J. Nesbitt, Chem. Phys. Lett. 127, 374 (1986).CrossRefGoogle Scholar
  21. 21).
    C. M. Lovejoy and D. J. Nesbitt, Chem. Phys. Lett., submitted.Google Scholar
  22. 22).
    C. M. Lovejoy and D. J. Desbitt, Chem. Phys. Lett., submitted.Google Scholar
  23. 23).
    G. D. Hayman, J. Hodge, B. J. Howard, J. S. Muenter, and T. R. Dyke, J. Chem. Phys. 87, 1670 (1987).CrossRefGoogle Scholar
  24. 24).
    C. M. Lovejoy and D. J. Nesbitt, J. Chem. Phys. 87, 1450 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • David J. Nesbitt
    • 1
    • 2
    • 3
  1. 1.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA
  2. 2.Joint Institute for Laboratory AstrophysicsNational Bureau of StandardsBoulderUSA
  3. 3.University of ColoradoBoulderUSA

Personalised recommendations