Advertisement

Production and Relaxation of Negative Cluster Ions by Use of High-Rydberg Rare Gas Atoms

  • Tamotsu Kondow
  • Kozo Kuchitsu

Abstract

Electron attachment to a van der Waals cluster leading to formation of a cluster anion has attracted much attention, since it provides valuable information on the dynamical processes characteristic of cluster systems, which are related closely to those encountered in particle collisions in the gas phase and in relaxation processes in the condensed phase. Studies of electron attachment phenomena have recently made remarkable progress, partly because of the advancement in techniques for efficient production of cluster anions.1–5) We have developed a novel method of gentle and efficient production of cluster anions by transfer of the outermost electron (Rydberg electron) of a high-Rydberg rare gas atom to a van der Waals cluster and applied this method to a variety of van der Waals cluster systems.1) In the present paper, we describe the essential features of the experimental techniques and recent results.

Keywords

Cluster System Threshold Size Cluster Anion Electron Attachment Escape Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    T. Kondow, J. Phys. Chem. 91, 1307 (1987).CrossRefGoogle Scholar
  2. (2).
    M. Knapp, O. Echt, D. Kreisle, E. Recknagel, J. Chem. Phys. 85, 636 (1986).CrossRefGoogle Scholar
  3. (3).
    A. Stamatovic, K. Leiter, W. Ritter, K. Stephan and T. D. Mark, J. Chem. Phys. 83, 2942 (1985).CrossRefGoogle Scholar
  4. (4).
    H. Haberland, C. Ludewigt, H.-G. Schindler and D. R. Worsnop, Surf. Sci. 156, 157 (1985).CrossRefGoogle Scholar
  5. (5).
    K. H. Bowen, G. W. Liesegang, R. A. Sanders and D. R. Herschback, J. Phys. Chem. 87, 557 (1983).CrossRefGoogle Scholar
  6. (6).
    M. Matsuzawa, in Rydberg States of Atoms and Molecules, eds. R. F. Stebbings and F. B. Dunning (Cambridge Univ. Press, Cambridge, U. K., 1983) p. 267.Google Scholar
  7. (7).
    M. Tsukada, N. Shima, S. Tsuneyuki, H. Kageshima and T. Kondow, J. Chem. Phys. 87, 3927 (1987).CrossRefGoogle Scholar
  8. (8).
    T. F. Gallagher, in Rydberg States of Atoms and Molecules, eds. R. F. Stebbings and F. B. Dunning (Cambridge Univ. Press, Cambridge, U. K., 1983) p. 165.Google Scholar
  9. (9).
    R. S. Gohlke and L. H. Thompson, Anal. Chem. 40, 1004 (1968).CrossRefGoogle Scholar
  10. (10).
    J. Jortner, J. Chem. Phys. 30, 839 (1959).CrossRefGoogle Scholar
  11. (11).
    JANAF, Thermochemical Tables, Dow Chemical Co. (1965 —)Google Scholar
  12. (12).
    P. Kollman, J. Mckelvey, A. Johansson, and S. Rothenberg, J. Am. Chem. Soc. 97, 955 (1975).CrossRefGoogle Scholar
  13. (13).
    O. Echt, P. D. Dao, S. Morgan and A. W. Castleman, Jr., J. Chem. Phys. 82, 4076 (1985).CrossRefGoogle Scholar
  14. (14).
    P. Stampfli and K. H. Bennemann, Phys. Rev. Lett. 58, 2635 (1987).CrossRefGoogle Scholar
  15. (15).
    M. L. Alexander, M. A. Johnson, N. E. Levinger and W. C. Lineberger, Phys. Rev. Lett. 57, 976 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Tamotsu Kondow
  • Kozo Kuchitsu

There are no affiliations available

Personalised recommendations