The Application of Spectral Measures to the Stimulated Emission Pumping of Acetylene

  • J. L. Kinsey
  • R. D. Levine


The analysis of spectroscopic data for the signature of classically chaotic motion is of current interest1–10. Nuclear spectroscopy11,12 and computational studies13,14 have tended to emphasize the level spacing statistics involving primarily the short range level correlations. Here we discuss a complementary aspect, that of the statistics of the intensity distribution. This requires sufficient resolution to distinguish adjacent independent lines and a well established base line so that weak transitions can be discerned. So far, these conditions could only be met for computationally generated spectra. Stimulated Emission Pumping1 (SEP) is a double resonance technique which eliminates rotational congestion, yet for a given intermediate state one can access into very many highly vibrationally excited final states. Since such states are strongly mixed, it might appear that the transition intensities will vary in a smooth manner. In particular, such may be the case when a “bright” zero order state (i.e., a wave function carrying oscillator strength with respect to the intermediate level) is distributed amongst many final states. On the other hand, when good quantum numbers can be assigned, neighboring states can have quite different character and the spectral intensity can rapidly vary as a function of energy. The extent of fluctuation of intensities (with respect to their smooth envelope) can thus serve as a diagnostic for the onset of extensive state mixing and the resulting “intensity-sharing” amongst many states. One can argue however that even in the chaotic regime the fluctuations do not die out but settle to a universal limit3.


Intensity Fluctuation Level Spacing Bright State Gaussian Ensemble Gateway State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.E. Hamilton, J.L. Kinsey and R.W. Field, Ann. Rev. Phys. Chem. 37:493 (1986).CrossRefGoogle Scholar
  2. 2.
    E.J. Heller, J. Chem. Phys. 72:1337 (1980);CrossRefGoogle Scholar
  3. 2a.
    E. B. Stechel and EJ. Heller, Ann. Rev. Phys. Chem. 35:563 (1984).CrossRefGoogle Scholar
  4. 3.
    Y. Alhassid and R.D. Levine, Phys. Rev. Lett. 57:2879 (1986).CrossRefGoogle Scholar
  5. 4.
    C.E. Porter and R.G. Thomas, Phys. Rev. 104:483 (1956).CrossRefGoogle Scholar
  6. 5.
    Y.M. Engel, J. Brickmann and R.D. Levine, Chem. Phys. Lett. 137:441 (1987).CrossRefGoogle Scholar
  7. 6.
    E.J. Heller and R.L. Sundberg, in “Chaotic Behavior in Quantum Systems”, G. Casati, ed., Plenum, N.Y. (1985).Google Scholar
  8. 7.
    P. Pechukas, Phys. Rev. Lett. 51:943 (1983);CrossRefGoogle Scholar
  9. 7a.
    O. Bohigas, M.J. Gionnoni and C Schmit, Phys. Rev. Lett. 52:1 (1984).CrossRefGoogle Scholar
  10. 8.
    J.-P. Pique, Y. Chen, R.W. Field and J.L. Kinsey, Phys. Rev. Lett. 58:475 (1987).CrossRefGoogle Scholar
  11. 9.
    L. Leviander, M. Lombardi, R. Jost and J.-P. Pique, Phys. Rev. Lett. 56:2449 (1986).CrossRefGoogle Scholar
  12. 10.
    R.D. Levine, Adv. Chem. Phys. 70:53 (1987).CrossRefGoogle Scholar
  13. 11.
    C.E. Porter, “Statistical Theory of Spectra: Fluctuations”, Academic Press, N.Y. (1965).Google Scholar
  14. 12.
    T.A. Brody, J. Flores, J.B. French, D.A. Mello, A. Pandey and S.S. Wong, Rev. Mod. Phys. 53:385(1981).Google Scholar
  15. 13.
    E. Haller, H. Köppel and L.S. Cederbaum, Phys. Rev. Lett. 52:1665 (1984);CrossRefGoogle Scholar
  16. 13a.
    T.H. Seligman, J.J.M. Verbaarschot and M.R. Zirnbauer, Phys. Rev. Lett. 53:215 (1984).CrossRefGoogle Scholar
  17. 14.
    M.V. Berry and M.J. Robnik, J. Phys. A17:2413 (1984)Google Scholar
  18. 14.
    See also M.V. Berry, Proc. Roy. Soc. (London) A400:229 (1985).Google Scholar
  19. 15.
    J.G. Leopold, R.D. Levine and D. Richards, submitted.Google Scholar
  20. 16.
    R.L. Sundberg, E. Abramson, J.L. Kinsey and R.W. Field, J. Chem. Phys. 83:466 (1985).CrossRefGoogle Scholar
  21. 17.
    J.-P. Pique, Y.M. Engel, R.D. Levine, Y. Chen, R.W. Field and J.L. Kinsey, J. Chem. Phys., in press.Google Scholar
  22. 18.
    F.J. Dyson, J. Math. Phys. 3:166 (1966).CrossRefGoogle Scholar
  23. 19.
    M.L. Mehta, “Random Matrices”, Academic Press, N.Y. (1967).Google Scholar
  24. 20.
    N. Ullzh, Phys. Lett. 7:153 (1963);CrossRefGoogle Scholar
  25. 20a.
    N. Ullzh, J. Math. Phys. 4:1279(1963).CrossRefGoogle Scholar
  26. 21.
    E.J. Heller, Acc. Chem. Res. 14:368 (1981).CrossRefGoogle Scholar
  27. 22.
    R.D. Levine and J.L. Kinsey, in “Atom-Molecule Collision Theory”, R.B. Bernstein, ed., Plenum, N.Y. (1979).Google Scholar
  28. 23.
    J.L. Kinsey and R.D. Levine, Chem. Phys. Lett. 65:413 (1979).CrossRefGoogle Scholar
  29. 24.
    E.L. Sibert III, W.P. Reinhardt and J.T. Hynes, J. Chem. Phys. 81:1115,1135 (1984).CrossRefGoogle Scholar
  30. 25.
    Y. Chen, D.M. Jonas, C.E. Hamilton, P.G. Green, J.L. Kinsey and R.W. Field, Ber. Bunsenges. Phys. Chem., in press.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. L. Kinsey
    • 1
  • R. D. Levine
    • 2
  1. 1.Department of Chemistry and George Harrison Spectroscopy Lab.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.The Fritz Haber Research Center for Molecular DynamicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations