The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions

  • Frank Weinhold
  • John E. Carpenter


As the “Coulomb explosion”1 and other techniques add to our knowledge of molecular geometry, it is appropriate to recall the debt of gratitude that many theoretical concepts owe to structural studies. Indeed, new structural data have often provided the principal stimulus for new chemical concepts. Even prior to the discovery of the electron in the last century, qualitative structural inferences based on stoichiometry, number of isomers, and other lines of indirect chemical evidence were giving rise to models of molecular connectivity and geometry (e.g., the tetrahedral carbon atom of van’t Hoff and Le Bel2) that underlie current electronic theories of valence.


Natural Bond Orbital Natural Bond Orbital Analysis Lithium Atom Natural Population Analysis Boron Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, e.g., I. Plesser, Z. Vager, and R. Naaman, Phys. Rev. Lett. 56, 1559 (1986).CrossRefGoogle Scholar
  2. 2.
    J. H. van’t Hoff, Archiv, ne’erland 9, 445 (1874)Google Scholar
  3. 2a.
    J. A. Le Bel, Bull Soc. Chim. 22, 337 (1874).Google Scholar
  4. 3.
    G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916)CrossRefGoogle Scholar
  5. 3a.
    G. N. Lewis, Valence and the Structure of Atoms and Molecules (The Chemical Catalog Co., New York, 1923).Google Scholar
  6. 4.
    L. Pauling, J. Am. Chem. Soc. 53, 1367 (1931); cf. also Coulson, Ref. 7, pp. 203–205.CrossRefGoogle Scholar
  7. 5.
    J. C. Slater, Phys. Rev. 37, 481 (1931).CrossRefGoogle Scholar
  8. 6.
    L. Pauling, The Nature of the Chemical Bond (Cornell U. Press, Ithaca, N.Y., 1960).Google Scholar
  9. 7.
    C. A. Coulson, Valence, 2nd ed. (Oxford Univ. Press, New York, 1961), p. 270.Google Scholar
  10. 8.
    R. S. Mulliken, J. Chem. Phys. 3, 573 (1935); Ref. 7, pp. 107–110.CrossRefGoogle Scholar
  11. 9.
    H. A. Bent, Chem. Rev. 61, 275 (1961).CrossRefGoogle Scholar
  12. 10.
    L. Pauling, in, Correspondence Between Concepts in Chemistry and Quantum Chemistry (Technical Note No. 16, Quantum Chemistry Group, Uppsala University, Uppsala, Sweden, 1958), Part II, p. 73.Google Scholar
  13. 11.
    H. F. Schaefer III, The Electronic Structure of Atoms and Molecules: A Survey of Rigorous Quantum Mechanical Results (Addison-Wesley, Reading, MA, 1972).Google Scholar
  14. 12.
    J. P. Foster and F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980)CrossRefGoogle Scholar
  15. 12a.
    A. E. Reed and F. Weinhold, J. Chem. Phys. 78 4066 (1983)CrossRefGoogle Scholar
  16. 12b.
    A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735 (1985).CrossRefGoogle Scholar
  17. 13.
    P.-O. Lowdin, Phys. Rev. 97, 4066 (1983).Google Scholar
  18. 14.
    A. E. Reed and F. Weinhold, QCPE Bull. 5, 141 (1985).Google Scholar
  19. 15.
    For a review of the NBO formalism, see A. E. Reed, L. A. Curtiss, and F. Weinhold, University of Wisconsin Theoretical Chemistry Institute Report WIS-TCI-727 (1987); Chem. Rev., (to be published).Google Scholar
  20. 16.
    J. E. Carpenter and F. Weinhold, University of Wisconsin Theoretical Chemistry Institute Report WIS-TCI-689 (1985), unpublished.Google Scholar
  21. 17.
    For the standard ab initio computational methods and basis set designations referred to herein, see W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (John Wiley, New York, 1986).Google Scholar
  22. 18.
    J. E. Carpenter and F. Weinhold, J. Am. Chem. Soc. 110, 368 (1988).CrossRefGoogle Scholar
  23. 19.
    See, e.g., J. K. Kochi, Adv. Free-Radical Chem. 5, 189 (1975).Google Scholar
  24. 20.
    J. E. Carpenter and F. Weinhold, J. Mol. Struct. (THEOCHEM) 165, 189 (1988).CrossRefGoogle Scholar
  25. 21.
    See, e.g., R. Pauncz, The Alternant Molecular Orbital Method (W. B. Saunders Co, Philadelphia, 1967)Google Scholar
  26. 21a.
    J. W. Linnett, The Electronic Structure of Molecules. A New Approach (Methuen, London, 1964).Google Scholar
  27. 22.
    G. W. Wheland, Resonance in Organic Chemistry (John Wiley, New York, 1955).Google Scholar
  28. 23.
    L. Pauling, J. Chem. Phys. 51, 2767 (1961).CrossRefGoogle Scholar
  29. 24.
    L. A. Curtiss, C. A. Melendres, A. E. Reed, and F. Weinhold, J. Comp. Chem. 1, 294 (1986).CrossRefGoogle Scholar
  30. 25.
    J. T. Blair, J. C. Weisshaar, J. E. Carpenter, and F. Weinhold, J. Chem. Phys. 87, 392 (1987)CrossRefGoogle Scholar
  31. 25a.
    J. T. Blair, J. C. Weisshaar, and F. Weinhold, J. Chem. Phys. 88, 1467 (1988).CrossRefGoogle Scholar
  32. 26.
    K. J. Rensberger, J. T. Blair, F. Weinhold, and F. F. Crim (in preparation).Google Scholar
  33. 27.
    A. E. Reed and F. Weinhold J. Am. Chem. Soc. 108, 3586 (1986).CrossRefGoogle Scholar
  34. 28.
    W. Kutzelnigg, Angew. Chem., Int. Ed. Engl. 23, 272 (1984).CrossRefGoogle Scholar
  35. 29.
    The molecules SiH4 and A1H3 are apparent exceptions, but these more ionic species exhibit rather large departures from the idealized Lewis form (cf. pL, Table I) that also reflect the “strain” in using the geometrically optimal sp 3 or sp 2 hybrids.Google Scholar
  36. 30.
    A. E. Reed and P. v. R. Schleyer, J. Am. Chem. Soc. 109, 7362 (1987).CrossRefGoogle Scholar
  37. 31.
    See, e.g., F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (John Wiley Interscience, New York, 1962), p, 198ff.Google Scholar
  38. 32.
    P. v. R. Schleyer, in, P.-O. Löwdin and B. Pullman (eds.), New Horizons in Quantum Chemistry (D. Reidel Publishing Co., New York, 1983), pp. 95–109.CrossRefGoogle Scholar
  39. 33.
    A. E. Reed and F. Weinhold, J. Am, Chem. Soc. 107, 1919 (1985).CrossRefGoogle Scholar
  40. 34.
    P. v. R. Schleyer, talk presented to the WATOC (World Association of Theoretical Organic Chemists) Congress, Budapest, Hungary, August, 1987Google Scholar
  41. 34a.
    P. v. R. Schleyer and A. E. Reed, J. Am. Chem. Soc. 110, 4453 (1988).CrossRefGoogle Scholar
  42. 35.
    J. E. Carpenter, Ph.D. Thesis (University of Wisconsin, Madison, 1987).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Frank Weinhold
    • 1
  • John E. Carpenter
    • 1
  1. 1.Theoretical Chemistry Institute and Department of ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations