Skip to main content

Direct Calculation of Molecular Transition Energies by the Open-Shell Coupled-Cluster Method

  • Chapter
  • 165 Accesses

Abstract

The exp(S) or coupled-cluster (CC) method1–5 has been used widely in recent years for ab initio electronic structure calculations in closed-shell, non-degenerate systems, with highly satisfactory results.6 The CCSD approximation,7 in which single and double excitations are included to all orders, is usually employed; a few calculations including the effect of triple excitations (CCSDT) have appeared recently.8 The theory becomes considerably more complicated when the system of interest cannot be described in terms of a closed-shell structure. A variety of multireference, open-shell (OSCC) formulations, designed to handle such situations, have been described.9–23

Supported in part by the U.S.-Israel Binational Science Foundation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Hubbard, Proc. Roy. Soc. A240:539 (1957)

    Google Scholar 

  2. J. Hubbard, Proc. Roy. Soc. A243:336 (1958).

    Google Scholar 

  3. F. Coester, Nucl. Phys. 7:421 (1958)

    Article  Google Scholar 

  4. F. Coester and H. Kümmel, Nucl. Phys. 17:477 (1960)

    Article  CAS  Google Scholar 

  5. H. Kümmel, K. H. Lührmann and J. G. Zabolitzky, Phys. Rept. 36:1 (1978).

    Article  Google Scholar 

  6. O. Sinanoglu, Adv. Chem. Phys. 6:315 (1964).

    Article  Google Scholar 

  7. J. Cizek, J. Chem. Phys. 45:4256 (1966)

    Article  CAS  Google Scholar 

  8. J. Cizek, Adv. Chem. Phys. 14:35 (1969).

    Article  CAS  Google Scholar 

  9. J. Paldus, J. Cizek and I. Shavitt, Phys. Rev. A 5:50 (1972)

    Article  Google Scholar 

  10. J. Paldus, J. Cizek and I. Shavitt, J. Paldus, J. Chem. Phys. 67:303 (1977)

    Article  CAS  Google Scholar 

  11. B. G. Adams and J. Paldus, Phys. Rev. A 20:1 (1979).

    Article  CAS  Google Scholar 

  12. For a review see R. J. Bartlett, Ann. Rev. Phys. Chem. 32:359 (1981).

    Article  CAS  Google Scholar 

  13. G.D. Purvis and R. J. Bartlett, J. Chem. Phys. 76:1910 (1982)

    Article  CAS  Google Scholar 

  14. J. M. Cullen and M. C. Zerner, J. Chem. Phys. 77:4088 (1982). Both references give the explicit CCSD equations, and the second one also shows the CCSD diagrams.

    Article  CAS  Google Scholar 

  15. Y. S. Lee and R. J. Bartlett, J. Chem. Phys. 80:4371 (1984)

    Article  CAS  Google Scholar 

  16. Y. S. Lee, S. A. Kucharsky, and R. J. Bartlett, J. Chem. Phys. 81:5906 (1984)

    Article  Google Scholar 

  17. M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett, J. Chem. Phys. 83:4041 (1985)

    Article  CAS  Google Scholar 

  18. J. Noga and R. J. Bartlett, J. Chem. Phys. 86:7041 (1987).

    Article  CAS  Google Scholar 

  19. F. E. Harris, Intern. J. Quantum Chem. S11:403 (1977).

    Google Scholar 

  20. H.J. Monkhorst, Intern. J. Quantum Chem. S11:421 (1977).

    Google Scholar 

  21. J. Paldus, J. Cizek, M. Saute and A. Laforgue, Phys, Rev. A 17:805 (1978)

    Article  CAS  Google Scholar 

  22. M. Saute, J. Paldus and J. Cizek, Intern. J. Quantum Chem. 15:463 (1979).

    Article  CAS  Google Scholar 

  23. D. Mukherjee, R. K. Moitra and A. Mukhopadhyay, Pramana 4:247 (1975)

    Article  CAS  Google Scholar 

  24. D. Mukherjee, R. K. Moitra and A. Mukhopadhyay, Mol. Phys. 30:1861 (1975)

    Article  CAS  Google Scholar 

  25. A. Mukhopadhyay, R. K. Moitra and D. Mukherjee, J. Phys. B 12:1 (1979)

    Article  CAS  Google Scholar 

  26. D. Mukherjee and P. K. Mukherjee, Chem. Phys. 39:325 (1979)

    Article  CAS  Google Scholar 

  27. S. S. Adnan, S. Bhattacharyya and D. Mukherjee, Mol. Phys. 39:519 (1980)

    Article  CAS  Google Scholar 

  28. S. S. Adnan, S. Bhattacharyya and D. Mukherjee, Chem. Phys. Lett. 85:204 (1981).

    Article  Google Scholar 

  29. R. Offerman, W. Ey and H. Kümmel, Nucl. Phys. A273:349 (1976)

    Google Scholar 

  30. R. Offerman, Nucl. Phys. A273:368 (1976)

    Google Scholar 

  31. W. Ey, Nucl. Phys. A296:189 (1978).

    CAS  Google Scholar 

  32. I. Lindgren, Intern. J. Quantum Chem. S12:33 (1978)

    Google Scholar 

  33. S. Salomonson, I. Lindgren and A. M. Martensson, Phys. Scr. 21:351 (1980)

    Article  CAS  Google Scholar 

  34. I. Lindgren and J. Morrison, “Atomic Many-Body Theory”, Springer, Berlin, (1982).

    Book  Google Scholar 

  35. I. Lindgren, Phys. Scr. 32:291 (1985).

    Article  Google Scholar 

  36. I. Lindgren, Phys. Scr. 32:611 (1985).

    Article  Google Scholar 

  37. H. Nakatsuji, Chem. Phys. Lett. 59:362 (1978)

    Article  CAS  Google Scholar 

  38. H. Nakatsuji, Chem. Phys. Lett. 67:329 (1979)

    Article  CAS  Google Scholar 

  39. H. Nakatsuji, Chem. Phys. 75:425(1983)

    Article  CAS  Google Scholar 

  40. H. Nakatsuji, Chem. Phys. 76:283 (1983)

    Article  CAS  Google Scholar 

  41. H. Nakatsuji, J. Chem. Phys. 80:3703 (1984).

    Article  CAS  Google Scholar 

  42. H. Reitz and W. Kutzelnigg, Chem. Phys. Lett. 66:111 (1979)

    Article  CAS  Google Scholar 

  43. W. Kutzelnigg, J. Chem. Phys. 77:3081 (1981)

    Article  Google Scholar 

  44. W. Kutzelnigg, J. Chem. Phys. 80:822 (1984).

    Article  CAS  Google Scholar 

  45. B. Jeziorski and H. J. Monkhorst, Phys. Rev. A 24:1668 (1981)

    Article  CAS  Google Scholar 

  46. L. Z. Stolarczyk and H. J. Monkhorst, Phys. Rev. A 32:725 (1985).

    Article  Google Scholar 

  47. L. Z. Stolarczyk and H. J. Monkhorst, Phys. Rev. A 32:743 (1985).

    Article  Google Scholar 

  48. A. Banerjee and J. Simons, Intern. J. Quantum Chem. 19:207 (1981).

    Article  CAS  Google Scholar 

  49. V. Kvasnicka, Chem. Phys. Lett. 79:89 (1981).

    Article  CAS  Google Scholar 

  50. A. Haque and D. Mukherjee, J. Chem. Phys. 80:5058 (1984)

    Article  CAS  Google Scholar 

  51. A. Haque and D. Mukherjee, Pramana 23:651 (1984).

    Article  CAS  Google Scholar 

  52. J. Arponen, Ann. Phys. (NY) 151:311 (1983).

    Article  CAS  Google Scholar 

  53. K. Tanaka and H. Terashima, Chem. Phys. Lett. 106:558 (1984).

    Article  CAS  Google Scholar 

  54. A. Haque and U. Kaldor, Chem. Phys. Lett. 117:347 (1985).

    Article  CAS  Google Scholar 

  55. A. Haque and U. Kaldor, Chem. Phys. Lett. 120:261 (1985).

    Article  CAS  Google Scholar 

  56. A. Haque and U. Kaldor, Intern. J. Quantum Chem. 29:425 (1986).

    Article  CAS  Google Scholar 

  57. U. Kaldor and A. Haque, Chem. Phys. Lett. 128:45 (1986).

    Article  CAS  Google Scholar 

  58. U. Kaldor, Intern. J. Quantum Chem. S20:445 (1986).

    Article  Google Scholar 

  59. U. Kaldor, J. Comput. Chem. 8:448 (1987).

    Article  CAS  Google Scholar 

  60. U. Kaldor, J. Chem. Phys. 87:467 (1987).

    Article  CAS  Google Scholar 

  61. U. Kaldor, J. Chem. Phys. 87:4693 (1987).

    Article  CAS  Google Scholar 

  62. G. Hose and U. Kaldor, J. Phys. B 12:3827 (1979).

    Article  CAS  Google Scholar 

  63. B. H. Brandow, Rev. Mod. Phys. 39:771 (1967).

    Article  CAS  Google Scholar 

  64. G. Hose and U. Kaldor, Phys. Scr. 21:357 (1980)

    Article  CAS  Google Scholar 

  65. G. Hose and U. Kaldor, Chem. Phys. 63:165 (1981)

    Article  Google Scholar 

  66. G. Hose and U. Kaldor, J. Phys. Chem. 86:2133 (1982)

    Article  CAS  Google Scholar 

  67. G. Hose and U. Kaldor, Phys. Rev. A 30:2932 (1984)

    Article  CAS  Google Scholar 

  68. U. Kaldor, J. Chem. Phys. 81:2406 (1984).

    Article  CAS  Google Scholar 

  69. T. H. Schucan and H. A. Weidenmuller, Ann. Phys. (NY) 73:108 (1972)

    Article  CAS  Google Scholar 

  70. T. H. Schucan and H. A. Weidenmuller, Ann. Phys. (NY) 76:483 (1973).

    Article  Google Scholar 

  71. D. Mukherjee, Chem. Phys. Lett. 125:207 (1986)

    Article  CAS  Google Scholar 

  72. D. Mukherjee, Intern. J. Quantum Chem. S20:409 (1986).

    Article  Google Scholar 

  73. D. Sinha, S. Mukhopadhyay, and D. Mukherjee, Chem. Phys. Lett. 129:369 (1986).

    Article  CAS  Google Scholar 

  74. S. Koch and D. Mukherjee, preprint (1987).

    Google Scholar 

  75. U. Kaldor, J. Comput. Phys. 20:432 (1976).

    Article  Google Scholar 

  76. S. Huzinaga, J. Chem. Phys. 42:1293 (1965).

    Article  Google Scholar 

  77. T. H. Dunning, J. Chem. Phys. 53:2823 (1970). The d exponents were 0.9 for the 4s2pld set, 0.62 and 2.09 for the 4s3p2d set.

    Article  CAS  Google Scholar 

  78. P. Krupenie, J. Phys. Chem. Ref. Data 1:423 (1972).

    Article  CAS  Google Scholar 

  79. B. J. Moss and W. A. Goddard III, J. Chem. Phys. 63:3523 (1975).

    Article  CAS  Google Scholar 

  80. C. W. Bauschlicher and S. R. Langhoff, J. Chem. Phys. 86:5595 (1987).

    Article  CAS  Google Scholar 

  81. R. Krishnan, J. S. Brinkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72:650 (1980)

    Article  CAS  Google Scholar 

  82. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80:3265 (1984).

    Article  CAS  Google Scholar 

  83. S. K. Shih, W. Butscher, R. J. Buenker, and S. D. Peyerimhoff, Chem. Phys. 29:241 (1978).

    Article  CAS  Google Scholar 

  84. K.P. Huber and G. Herzberg, “Constants of Diatomic Molecules”, Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  85. J. Oddershede, Adv. Chem. Phys. 69:201 (1987)

    Article  CAS  Google Scholar 

  86. A. Lofthus and P. H. Krupenie, J. Phys. Chem. Ref. Data 6:113 (1977).

    Article  CAS  Google Scholar 

  87. G. H. Jeung, J. P. Daudey, and J. P. Malrieu, J. Chem. Phys. 77:3571 (1982)

    Article  CAS  Google Scholar 

  88. G. H. Jeung, J. P. Daudey, and J. P. Malrieu, Chem. Phys. Lett. 94:300 (1983)

    Article  CAS  Google Scholar 

  89. G. H. Jeung, J. P. Daudey, and J. P. Malrieu, J. Phys. B 16:699 (1983)

    Article  CAS  Google Scholar 

  90. S. P. Walch, C. W. Bauschlicher, P. E. M. Siegbahn, and H. Partridge, Chem. Phys. Lett. 92:54 (1982)

    Article  CAS  Google Scholar 

  91. H. Partridge, D. A. Dixon, S. P. Walch, C. W. Bauschlicher, and J. L. Gole, J. Chem. Phys. 79:1859 (1983)

    Article  CAS  Google Scholar 

  92. H. Partridge, C. W. Bauschlicher, S. P. Walch, and B. Liu, J. Chem. Phys. 79:1866 (1983)

    Article  CAS  Google Scholar 

  93. W. Müller, J. Flesch, and W. Meyer, J. Chem. Phys. 80:3297 (1984).

    Article  Google Scholar 

  94. H. Primas, in “Modern Quantum Chemistry”, O. Sinanoglu, ed., Academic, New-York (1965), Vol 2.

    Google Scholar 

  95. S. Iwata and K. F. Freed, J. Chem. Phys. 61:1500 (1974)

    Article  CAS  Google Scholar 

  96. K. F. Freed, in “Modern Thoretical Chemistry”, G. A. Segal, ed., Plenum, New York (1977)

    Google Scholar 

  97. H. Sung, K. F. Freed, M. F. Herman, and D. L. Yeager, J. Chem. Phys. 72:4158 (1980)

    Article  Google Scholar 

  98. M. G. Sheppard and K. F. Freed, J. Chem. Phys. 75:4525 (1981).

    Article  CAS  Google Scholar 

  99. S. Liu, M. F. Daskalakis, and C. E. Dykstra, J. Chem. Phys. 85:5877 (1986). The basis denoted L was used, with five orbitals in each d set.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Kaldor, U., Ben-Shlomo, S. (1988). Direct Calculation of Molecular Transition Energies by the Open-Shell Coupled-Cluster Method. In: Naaman, R., Vager, Z. (eds) The Structure of Small Molecules and Ions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7424-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7424-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7426-8

  • Online ISBN: 978-1-4684-7424-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics