Advertisement

A Photoion-Photoelectron Coincidence Study of (CO)2

  • K. Norwood
  • J.-H. Guo
  • G. Luo
  • C. Y. Ng

Abstract

Molecular beam photoionization1 and equilibrium2 mass spectrometric measurements provide valuable energetic information about dimer and cluster ions in their ground state. In spite of recent intense research activities in cluster ion chemistry, little is known about the interaction energies of an excited state ion with neutral molecules. A systematic method for determining the binding energies of a ground state as well as an excited state ion with neutral species is to measure the adiabatic ionization energies (IE) of the appropriate clusters by photoelectron spectroscopic techniques. The concentrations of clusters produced in a supersonic beam are usually much lower than that of the monomers. This, together with the fact that photoelectron bands of monomers and clusters often overlap in energy, makes the measurement of the photoelectron spectrum (PES) of a specific cluster difficult.

Keywords

Electronic Band Flight Time Intramolecular Charge Transfer Bond Dissociation Energy Ionization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Y. Ng, Adv. Chem. Phys. 52, 263 (1983).CrossRefGoogle Scholar
  2. 2.
    P. Kebarle, Ann. Rev. Phys. Chem. 28, 445 (1977).CrossRefGoogle Scholar
  3. 3.
    T. D. Mark and A. W. Castleman Jr., Adv. At. Mol. Phys. 20, 65 (1984).CrossRefGoogle Scholar
  4. 4.
    A. W. Castleman Jr. and R. G. Keesee, Ann. Rev. Phys. Chem. 37, 525 (1986).CrossRefGoogle Scholar
  5. 5.
    J. C. Phillips, Chem. Rev. 86, 619 (1986).CrossRefGoogle Scholar
  6. 6.
    A. W. Castleman Jr. and R. G. Keesee, Chem. Rev. 86, 589 (1986).CrossRefGoogle Scholar
  7. 7.
    “The Physics and Chemistry of Small Clusters”, P. Jena, Ed. (Plenum, New York, 1987) (Proceedings of the International Symposium on the Physics and Chemistry of Small Clusters, Richard, VA, 1986).Google Scholar
  8. 8.
    M. F. Jarrold, A. J. Illies, and M. T. Bowers, J. Chem. Phys. 81, 222 (1984);CrossRefGoogle Scholar
  9. 8a.
    M. F. Jarrold, A. J. Illies, and M. T. Bowers, J. Chem. Phys. 79, 6086 (1983);CrossRefGoogle Scholar
  10. 8b.
    M. F. Jarrold, A. J. Illies, and M. T. Bowers, J. Chem. Phys. 81, 214 (1984);CrossRefGoogle Scholar
  11. 8c.
    A. J. lilies, M. F. Jarrold, W. Wagner-Redeker and M. T. Bowers, J. Phys. Chem. 88, 5204 (1984).CrossRefGoogle Scholar
  12. 9.
    S. C. Ostrander and J. C. Weisshaar, Chem. Phys. Lett. 129, 220 (1986);CrossRefGoogle Scholar
  13. 9a.
    S. C. Ostrander, L. Sanders and J. C. Weisshaar, J. Chem. Phys. 84, 529 (1986).CrossRefGoogle Scholar
  14. 10.
    B. Brehm and E. von Puttkamer, Z. Naturforsch. Teil A22, 8 (1967).Google Scholar
  15. 11.
    J.H.D. Eland, Int. J. Mass Spectrom. Ion Phys. 8, 143 (1972).CrossRefGoogle Scholar
  16. 12.
    R. Stockbauer, J. Chem. Phys. 58, 3800 (1973).CrossRefGoogle Scholar
  17. 13.
    M. E. Gellender and A. D. Baker, in C. R. Brundle and A. D. Baker, Eds., “Electron Spectroscopy”, (Academic Press, New York, 1977), Vol. 1, p. 435.Google Scholar
  18. 14.
    T. Baer, in M. T. Bowers, Ed., “Gas Phase Ion Chemistry”, (Academic Press, New York, 1979), Vol. 1, p. 153.Google Scholar
  19. 15.
    E. D. Poliakoff, P. M. Dehmer, J. L. Dehmer and R. Stockbauer, J. Chem. Phys. 75, 5214 (1982).CrossRefGoogle Scholar
  20. 16.
    L. Cordis, G. Ganteför, J. Beßlich and A. Ding, Z. Phys. D3, 323 (1986).Google Scholar
  21. 17.
    C. Holzapfel, Rev. Sei. Instrum. 45, 894 (1974).CrossRefGoogle Scholar
  22. 18.
    Y. Ono, S. H. Linn, H. F. Prest, M. E. Gress and C. Y. Ng, J. Chem. Phys. 73, 2523 (1980).CrossRefGoogle Scholar
  23. 19.
    C.-L. Liao, J.-D. Shao, R. Xu, G. D. Flesch, Y.-G. Li and C. Y. Ng, J. Chem. Phys. 85, 3874 (1986).CrossRefGoogle Scholar
  24. 20.
    D. W. Turner, C. Baker, A. D. Baker and C. R. Brundle, “M9lecular Photoelectron Spectroscopy”, (Wiley, New York, 1970).Google Scholar
  25. 21.
    J. Danon, G. Mauclaire, T. R. Govers and R. Marx, J. Chem. Phys. 76, 1255 (1982).CrossRefGoogle Scholar
  26. 22.
    V. E. Bondybey and T. A. Miller, J. Chem. Phys. 69, 3597 (1978).CrossRefGoogle Scholar
  27. 23.
    M. Bloch and D. W. Turner, Chem. Phys. Lett. 30, 344 (1975).CrossRefGoogle Scholar
  28. 24.
    S. A. Linn, Y. Ono and C. Y. Ng, J. Chem. Phys. 74, 3342 (1981).CrossRefGoogle Scholar
  29. 25.
    J. H. Fock, P. Gürtler and E. E. Koch, Chem. Phys. 47, 87 (1980).CrossRefGoogle Scholar
  30. 26.
    J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, “Molecular Theory of Gases and Liquids”, (Wiley, New York, 1964), p. 111.Google Scholar
  31. 27.
    S. C. deCastro, H. F. Schaefer III, and R. M. Pitzer, J. Chem. Phys. 74, 550 (1981).CrossRefGoogle Scholar
  32. 28.
    J. T. Blair, J. C. Weisshaar, J. E. Carpenter and Frank Weinhold, J. Chem. Phys. 87, 392 (1987).CrossRefGoogle Scholar
  33. 29.
    L. B. Knight, J. Steadman, P. K. Miller, D. E. Bowman, E. R. Davidson D. Feller, J. Chem. Phys. 80, 4593 (1984).CrossRefGoogle Scholar
  34. 30.
    R. M. Berns and A. van der Avoird, J. Chem. Phys. 72, 6107 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • K. Norwood
    • 1
    • 2
  • J.-H. Guo
    • 1
    • 2
  • G. Luo
    • 1
    • 2
  • C. Y. Ng
    • 1
    • 2
  1. 1.Ames LaboratoryU.S. Department of EnergyAmesUSA
  2. 2.Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations