Advertisement

Approximate Separability and Choice of Coordinates for Excited Vibrations of Polyatomic Molecules and Clusters

  • R. B. Gerber
  • T. R. Horn
  • M. A. Ratner

Abstract

To simplify the dynamics of coupled anharmonic vibrations in polyatomic systems, methods such as the self-consistent field (SCF) approximation and the adiabatic approximation assume that motions in different modes are separable. Success of such methods thus depends considerably on a good choice of the coordinates that are being mutually separated.

This study examines the physical considerations that can be used in making adequate choices of coordinate systems in SCF calculations of small molecules and van der Waals clusters. Both Cartesian and curvilinear coordinate systems are discussed. Part of this article reviews results of previous studies on this topic, e.g. the optimization of Cartesian coordinates by coordinate rotation, and the introduction of ellipsoidal coordinates for the bending-stretching spectrum of HCN. New results are presented for Xe(He)2, a prototype of the “Three Balls” problem; and for I2He, a prototype of the “Stick and Ball” systems. Comparative SCF calculations using hyperspherical, ellipsoidal and Jacobi coordinates are made, in a full 3D framework. Hyperspherical modes are found optimal for the “Three Balls”, ellipsoidal coordinates prove optimal for the “Stick and Ball”. Physical explanation for these findings is offered, and related insight is obtained into the vibrational motions involved. Suggestions are made of possible extensions of some of the above themes for other systems.

Keywords

Normal Mode Adiabatic Approximation Minimum Energy Path Curvilinear Coordinate System Coordinate Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.E. Hamilton, J.L. Kinsey and R.W. Field, Ann. Rev. Phys Chem. 37, 493 (1986).CrossRefGoogle Scholar
  2. 2.
    R.E. Miller, J. Phys. Chem. 93, 301 (1986).Google Scholar
  3. 3.
    See, for instance: Z. Bacic and J.C. Light, J. Chem. Phys. 85, 4594 (1986);CrossRefGoogle Scholar
  4. 3a.
    See, for instance: Z. Bacic and J.C. Light, 86, 3065 (1987).Google Scholar
  5. 4.
    J.M. Bowman, Accts. Chem. Res. 19, 202 (1986).CrossRefGoogle Scholar
  6. 5.
    M.A. Ratner and R.B. Gerber, J. Phys. Chem. 90, 20 (1986).CrossRefGoogle Scholar
  7. 6.
    R.B. Gerber and M.A. Ratner, Adv. Chem. Phys. 70 (Part 1) 97 (1988).CrossRefGoogle Scholar
  8. 7.
    M. Shapiro and M.S. Child, J. Chem. Phys. 76, 6176 (1982).CrossRefGoogle Scholar
  9. 8.
    G. Hose, H.S. Taylor and Y.Y. Bai, J. Chem. Phys. 80 4313 (1984).CrossRefGoogle Scholar
  10. 9.
    P.R. Certain and N. Moiseyev, J. Chem. Phys. 86, 2146 (1987).CrossRefGoogle Scholar
  11. 10.
    G.C. Schatz, M.A. Ratner and R.B. Gerber, J. Chem. Phys. (in press).Google Scholar
  12. 11.
    Z. Bacic, R.B. Gerber and M.A. Ratner, J. Phys. Chem. 90, 3606 (1986).CrossRefGoogle Scholar
  13. 12.
    See, for instance: (a) G.D. Carney, L.I. Sprandel and C.W. Kern, Adv. Chem. Phys. 37, 305 (1978);CrossRefGoogle Scholar
  14. 12.(b).
    J.M. Bowman, K. Christoffel and F. Tobin, J. Phys. Chem. 83, 905 (1979);CrossRefGoogle Scholar
  15. 12.(c).
    R.B. Gerber and M.A. Ratner, Chem. Phys. Lett 68, 195 (1979).CrossRefGoogle Scholar
  16. 13.
    M.A. Ratner, R.B. Gerber and V. Buch in “Stochasticity and Intramolecular Redistribution of Energy”, edited by R. Lefebvre and S. Mukamel (Reidel, Dordrecht, Holland 1986) p. 57.Google Scholar
  17. 14.
    R.M. Roth, M.A. Ratner and R.B. Gerber, J. Phys. Chem. 87, 2376 (1983).CrossRefGoogle Scholar
  18. 15.
    B.C. Garrett and D.G. Truhlar, Chem. Phys. Lett 92, 64 (1982).CrossRefGoogle Scholar
  19. 16.
    T.C. Thompson and D.G. Truhlar, J. Chem. Phys. 77, 3031 (1982).CrossRefGoogle Scholar
  20. 17.
    R. Lefebvre, Int. J. Quant. Chem. 23, 543 (1983).CrossRefGoogle Scholar
  21. 18.
    N. Moiseyev, Chem. Phys. Lett 98, 223 (1983).CrossRefGoogle Scholar
  22. 19.
    L.L. Gibson, R.M. Roth, M.A. Ratner and R.B. Gerber, J. Chem. Phys. 85, 3425 (1986).CrossRefGoogle Scholar
  23. 20.
    T.R. Horn, R.B. Gerber and M.A. Ratner, to be published.Google Scholar
  24. 21.
    J. Kucar, H.-D. Meyer and L.S. Cederbaum, Chem. Phys. Lett. 140, 525 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • R. B. Gerber
    • 1
  • T. R. Horn
    • 1
  • M. A. Ratner
    • 2
  1. 1.Department of Physical Chemistry and The Fritz Haber Research Center for Molecular DynamicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations