What can Coulomb Explosions Teach Us about Clusters?

  • E. P. Kanter
  • A. Faibis
  • L. Tack


In recent years, there has been a considerable interest in the study of gas-phase atomic clusters. Among the motivations for this work is the fact that such clusters provide a bridge between molecular and condensed matter physics, and thus provide an opportunity to study the structural and electronic rearrangements involved in this transition. Small carbon cluster ions are particularly interesting because of their importance in many chemical processes such as catalysis and combustion and there has been a long history of work with these ions. While there now exists a substantial body of work on the subject1, all of the experimental structural information to date is indirect. Typically, such experiments probe gross features by studying changes in stability with increasing size through measurements of relative abundances, ionization potentials, chemical activity, or fragmentation energies. Recently, more sophisticated spectroscopic techniques have provided some information on electronic states and further offered hopes of probing the nuclear vibra- tional motions within such systems.2 Nevertheless, some of the most important findings (such as shell structure) still remain controversial because of the incomplete nature of the body of data. As has been reported at this workshop, Coulomb explosion experiments have recently provided detailed images of the structures of several small molecules.


Coulomb Explosion Spatial Geometry Linear Geometry Relative Velocity Vector Incomplete Nature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    see e.g. PDMS and Clusters, E. R. Hilf, F. Kammer, K. Wien, eds., Springer-Verlag, Berlin, (1987).Google Scholar
  2. 2.
    O. Chesnovsky, S. Yang, C. L. Pettiette, M. J. Craycraft, Y. Liu, and R. E. Smalley, Chem. Phys. Lett. 138:119 (1987).CrossRefGoogle Scholar
  3. 3.
    W. L. Brown, R. R. Freeman, K. Raghavachari, and M. Schlüter, Science 235:860 (1987).CrossRefGoogle Scholar
  4. 4.
    W. Kuhnel, E. Gey, and H.-J. Spangenberg, Z. phys. Chemie, Leipzig 263:641 (1982).Google Scholar
  5. 5.
    I. Plesser, Z. Vager, and R. Na’aman, Phys. Rev. Lett. 56: 1559 (1986).CrossRefGoogle Scholar
  6. 6.
    D. S. Gemmell, Chem. Rev. 80:301 (1980) and references therein.CrossRefGoogle Scholar
  7. 7.
    E. P. Kanter, Z. Vager, G. Both, and D. Zajfman, J. Chem. Phys. 85:7487 (1986).CrossRefGoogle Scholar
  8. 8.
    Z. Vager, E. P. Kanter, G. Both, P. J. Cooney, A. Faibis, W. Koenig, B. J. Zabranksy, and D. Zajfman, Phys. Rev. Lett. 57:2793 (1986).CrossRefGoogle Scholar
  9. 9.
    A. Faibis, W. Koenig, E. P. Kanter, and Z. Vager, Nucl. Instrum. and Meth. B13:673 (1986).Google Scholar
  10. 10.
    A. Faibis, E. P. Kanter, G. Natanson, L. Tack, and Z. Vager, to be published.Google Scholar
  11. 11.
    P. N. T. Van Velzen and W. J. Van der Hart, Org. Mass Spect. 16:237(1981).Google Scholar
  12. 12.
    H. M. Rosenstock and K. E. McCulloh, Int. J. Mass Spect. Ion Phys. 25:327 (1977).CrossRefGoogle Scholar
  13. 13.
    R. Stockbauer and H. M. Rosenstock, Int. J. Mass Spect. Ion Phys. 27:185 (1978).CrossRefGoogle Scholar
  14. 14.
    A. C. Parr, A. J. Jason, R. Stockbauer, and K. E. McCulloh, Int. J. Mass Spect. Ion Phys. 30:319 (1979).CrossRefGoogle Scholar
  15. 15.
    G. Frenking and H. Schwarz, Int. J. Mass Spect. Ion Phys. 52:131 (1983).CrossRefGoogle Scholar
  16. 16.
    P. J. Ausloos and S. G. Lias, J. Am. Chem. Soc. 103:6505 (1981).CrossRefGoogle Scholar
  17. 17.
    D. Smith and N. G. Adams, Int. J. Mass Spect. Ion Proc. 76:307 (1987) and references therein.CrossRefGoogle Scholar
  18. 18.
    L. Radom, P. C. Hariharan, J. A. Pople, and P. v. R. Schleyer, J. Am. Chem. Soc. 98:10 (1976).CrossRefGoogle Scholar
  19. 19.
    H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data 6:Suppl. No. 1 (1977).Google Scholar
  20. 20.
    K. Raghavachari, private communication and to be published.Google Scholar
  21. 21.
    R. J. Saykally, Science, 239:157 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • E. P. Kanter
    • 1
  • A. Faibis
    • 1
  • L. Tack
    • 1
  1. 1.Physics DivisionArgonne National LaboratoryArgonneFrance

Personalised recommendations