Photodissociation Dynamics of the H3+ Molecule

  • Jose M. Gomez Llorente
  • Eli Pollak


A classical trajectory study of the photodissociation dynamics of H 3 + is presented. Total angular momentum barriers confine a large number of classical states in the interaction region for infinite time at energies above the dissociation limit. The microcanonical density of states was evaluated using Monte Carlo methods. The quantal decay mechanism of the bound states embedded in the continuum is tunneling through the total angular momentum barriers. A sudden approximation is provided to evaluate the decay rates and product energy distributions. Fourier transforms of the classical mechanical dipole moment correlation function are presented and compared with the experimental coarse grained spectrum.


Potential Energy Surface Classical Trajectory Tunneling Probability Translational Energy Dissociation Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Carrington and R.A. Kennedy, J.Chem.Phys. 81, 91 (1984).CrossRefGoogle Scholar
  2. 2.
    M.S. Child, J.Phys.Chem. 90, 3595 (1986).CrossRefGoogle Scholar
  3. 3.
    R. Pfeiffer and M.S. Child, Mol. Phys. 60, 1367 (1987).CrossRefGoogle Scholar
  4. 4.
    E. Pollak, J.Chem.Phys. 86, 1645 (1987).CrossRefGoogle Scholar
  5. 5.
    M. Berblinger, E. Pollak and Ch. Schlier, J.Chem.Phys., in press.Google Scholar
  6. 6.
    J.M. Gomez Llorente and E. Pollak, Chem.Phys., in press.Google Scholar
  7. 7.
    W.J. Chesnavich, J.Chem.Phys. 77, 2988 (1982).CrossRefGoogle Scholar
  8. 8.
    K. Rynefors and S. Nordholm, Chem.Phys. 95, 345 (1985).CrossRefGoogle Scholar
  9. 9.
    R.K. Preston and J.C. Tully, J.Chem.Phys. 54, 4297 (1971).CrossRefGoogle Scholar
  10. 10.
    J.C. Tully and R.K. Preston, J.Chem.Phys. 55, 562 (1971).CrossRefGoogle Scholar
  11. 11.
    R. Düren, J. Phys. B 6, 1802 (1973).CrossRefGoogle Scholar
  12. 12.
    B.A. Waite and W.H. Miller, J.Chem.Phys. 73, 3713 (1980);CrossRefGoogle Scholar
  13. 12a.
    B.A. Waite and W.H. Miller, J.Chem.Phys. 74, 3910 (1981).CrossRefGoogle Scholar
  14. 13.
    J.M. Gomez Llorente and E. Pollak, Chem.Phys.Lett. 138, 125 (1987).CrossRefGoogle Scholar
  15. 14.
    J.K. Badenhoop and G.C. Schatz, J.Chem.Phys. 87, 5317 (1987).CrossRefGoogle Scholar
  16. 15.
    R.D. Levine, Adv. Chem. Phys., in press.Google Scholar
  17. 16.
    M. Wilkinson, J.Phys.A 20, 2415 (1987).CrossRefGoogle Scholar
  18. 17.
    M. Berblinger and Ch. Schlier, Mol.Phys., in press.Google Scholar
  19. 18.
    J.M. Gomez Llorente and E. Pollak, to be published.Google Scholar
  20. 19.
    G. Herzberg, Infrared and Raman Spectra (van Nostrand, New York, 1945) p. 24.Google Scholar
  21. 20.
    D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Gunaratne and I. Procaccia, Phys. Rev. Lett. 58, 2387 (1987).CrossRefGoogle Scholar
  22. 21.
    E.J. Kostelich and J.A. Yorke, University of Maryland, preprint.Google Scholar
  23. 22.
    B. Eckhardt, G. Hose, J.M. Gomez Llorente and E. Pollak, to be published.Google Scholar
  24. 23.
    Ch. Schlier, J. Tennyson, private conmunication.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jose M. Gomez Llorente
    • 1
  • Eli Pollak
    • 1
  1. 1.Chemical Physics Dept.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations