Advertisement

The Neutrophil pp 149-176 | Cite as

Degranulation and Intracellular Killing of Bacteria

  • Patrick Murphy

Abstract

Metchnikoff knew that neutrophils possessed “ferments” capable of digesting gelatin and other proteins, and that phagocytosed grains of litmus sometimes turned red. He knew that organisms taken up by neutrophils were enclosed in vacuoles and not admitted to the cytoplasm proper, and that in the vacuoles they were slowly digested. He said:

We are at present ignorant of the precise manner in which this digestive and other destructive action is accomplished, and do not even know whether the substance which kills the microbes is a ferment or not.

Keywords

NADPH Oxidase Chronic Granulomatous Disease Respiratory Quotient Cationic Protein NADH Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kanthack, A. A., and Hardy, W. B., The morphology and distribution of the wandering cells of mammalia, J. Physiol. 17:111 (1894).Google Scholar
  2. 2.
    Hirsch, J. G., Phagocytin: A bactericidal substance from polymorphonuclear leukocytes: Studies on the bactericidal action of phagocytin, J. Exp. Med. 103:589, 613 (1956).PubMedCrossRefGoogle Scholar
  3. 3.
    Cohn, Z. A., and Hirsch, J. G., The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leukocytes, J. Exp. Med. 112:983 (1960).PubMedCrossRefGoogle Scholar
  4. 4.
    Hirsch, J. G., and Cohn, Z. A., Degranulation of polymorphonuclear leukocytes following phagocytosis of microorganisms, J. Exp. Med. 112:1005 (1960).PubMedCrossRefGoogle Scholar
  5. 5.
    Hirsch, J. G., Cinemicrophotographic observation on granule lysis in polymorphonuclear leukocytes during phagocytosis, J. Exp. Med. 116:827 (1962).PubMedCrossRefGoogle Scholar
  6. 6.
    Zucker-Franklin, D., and Hirsch, J. G., Electron microscopic studies on the degranulation of rabbit peritoneal leukocytes during phagocytosis, J. Exp. Med. 120:569 (1964).PubMedCrossRefGoogle Scholar
  7. 7.
    Stossel, T. P., Pollard, T. D., Mason, R. J., et al., Isolation and properties of phagocytic vesicles from polymorphonuclear leukocytes, J. Clin. Invest. 50:1745 (1971).PubMedCrossRefGoogle Scholar
  8. 8.
    Bainton, D. F., Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms, J. Cell Biol. 58:249 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    Estensen, R. D., White, J. G., and Holmes, B., Specific degranulation of human polymorphonuclear leukocytes, Nature London 248:347 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    Romeo, D., Cramer, R., and Rossi, F., Use of l-anilino-8-naphthalene sulfonate to study structural transitions in cell membranes of PMN leukocytes, Biochem. Biophys. Res. Commun. 41:582 (1970).PubMedCrossRefGoogle Scholar
  11. 11.
    Nachman, R., Hirsch, J. G., and Baggiolini, M., Studies on isolated membranes of azurophil and specific granules from rabbit polymorphonuclear leukocytes, J. Cell Biol. 54:133 (1972).PubMedCrossRefGoogle Scholar
  12. 12.
    Lucy, J. A., Lipids and membranes, FEBS Lett. 40:S105 (1974).PubMedCrossRefGoogle Scholar
  13. 13.
    Lucy, J. A., The fusion of biological membranes, Nature London 227:815 (1970).PubMedCrossRefGoogle Scholar
  14. 14.
    Selvaraj, R. J., and Sbarra, A. J., Relationship of glycolytic and oxidative metabolism to particle entry and destruction in phagocytosing cells, Nature London 211:1272 (1966).PubMedCrossRefGoogle Scholar
  15. 15.
    Mandell, G. L., Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils, Infect. Immun. 9:337 (1974).PubMedGoogle Scholar
  16. 16.
    Klebanoff, S. J., and Luebke, R. G., The antilactobacillus system of saliva. Role of salivary peroxidase, Proc. Soc. Exp. Biol. Med. 118:483 (1965).PubMedGoogle Scholar
  17. 17.
    Klebanoff, S. J. Myeloperoxidase-halide-hydrogen peroxide anti-bacterial system, J. Bacteriol. 95:2131 (1968).PubMedGoogle Scholar
  18. 18.
    Klebanoff, S., and Hamon, C. B., Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes, J. Reticuloendothel. Soc. 12:170 (1972).PubMedGoogle Scholar
  19. 19.
    Klebanoff, S. J., and White, L. R., Iodination defect in the leukocytes of a patient with chronic granulomatous disease of childhood, N. Engl. J. Med. 280:460 (1969).PubMedCrossRefGoogle Scholar
  20. 20.
    Rossi, F., Romeo, D., and Patriarca, P., Mechanism of phagocytosis-associated oxidative metabolism in polymorphonuclear leukocytes and macrophages, J. Reticuloendothel. Soc. 12:127 (1972).PubMedGoogle Scholar
  21. 21.
    Root, R. K., Comparison of other defects of granulocyte oxidative killing mechanisms with chronic granulomatous disease, in: Bellanti, J. A., and Dayton, D. H. (eds.), The Phagocytic Cell in Host Resistance, Raven Press, New York, 1975, p. 201.Google Scholar
  22. 22.
    Hohn, D. C., and Lehrer, R. I., NADPH oxidase deficiency in X-linked chronic granulomatous disease, J. Clin. Invest. 55:707 (1975).PubMedCrossRefGoogle Scholar
  23. 23.
    Curnutte, J. T., Kipnes, R. S., and Babior, B. M., Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease, N. Engl. J. Med. 293:628 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    Fridovich, I., Superoxide radical and superoxide dismutase, Acc. Chem. Res. 5:321 (1972).CrossRefGoogle Scholar
  25. 25.
    Curnutte, J. T., and Babior, B. M., The effect of bacteria and serum on superoxide production by granulocytes, J. Clin. Invest. 53:1662 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    Allen, R. C., Stjernholm, R. L., and Steele, R. H., Evidence for the generation of an electronic excitation state in human PMN leukocytes, and its participation in bactericidal activity, Biochem. Biophys. Res. Commun. 47:679 (1972).PubMedCrossRefGoogle Scholar
  27. 27.
    Webb, L. S., Keele, B. B., and Johnston, R. B., Inhibition of phagocytosis chemilumi-nescence by superoxide dismutase, Infect. Immun. 9:1051 (1974).PubMedGoogle Scholar
  28. 28.
    Mason, R. J., Stossel, T. P., and Vaughan, M., Lipids of alveolar macrophages, polymorphonuclear leukocytes and their phagocytic vesicles, J. Clin. Invest. 51:2399 (1972).PubMedCrossRefGoogle Scholar
  29. 29.
    Sbarra, A. J., Paul, B. B., Jacobs, A. A., et al., Metabolic activities of the phagocyte as related to antimicrobial action, J. Reticuloendothel. Soc. 12:109 (1972).PubMedGoogle Scholar
  30. 30.
    Klebanoff, S. J., Role of the superoxide anion in the myeloperoxidase-mediated antimicrobial system, J. Biol. Chem. 249:3724 (1974).PubMedGoogle Scholar
  31. 31.
    Lehrer, R. I., and Cline, M. G., Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to candida infection, J. Clin. Invest. 48:1478 (1969).PubMedCrossRefGoogle Scholar
  32. 32.
    Miller, T. E., Killing and lysis of gram-negative bacteria through the synergistic effect of hydrogen peroxide, ascorbic acid and lysozyme, J. Bacteriol. 98:949 (1969).PubMedGoogle Scholar
  33. 33.
    Karaovsky, M. B., Biochemical aspects of the functions of polymorphonuclear and mononuclear leukocytes, in: Bellanti, J. A., and Dayton, D. H. (eds.), The Phagocytic Cell in Host Resistance, Raven Press, New York, 1975, p. 25.Google Scholar
  34. 34.
    Cline, M. J., and Lehrer, R. I., D-Amino acid oxidase in leukocytes: A possible D-amino acid linked antimicrobial system, Proc. Nat. Acad. Sci. U.S.A. 62:756 (1969).CrossRefGoogle Scholar
  35. 35.
    Johnston, R. B., Keele, B. B., Misra, H. P., et al., Superoxide anion generation and phagocytic bactericidal activity, in: Bellanti, J. A., and Dayton, D. H. (eds.), The Phagocytic Cell in Host Resistance, Raven Press, New York, 1975, p. 61.Google Scholar
  36. 36.
    Brune, K., Laffell, M. S., and Spitznagel, J. K., Microbicidal activity of peroxidaseless chicken heterophile leukocytes, Infect. Immun. 5:283 (1971).Google Scholar
  37. 37.
    Penniall, R., and Spitznagel, J. K., Chicken neutrophils: Oxidative metabolism in phagocytic cells devoid of myeloperoxidase, Proc. Nat. Acad. Sci. U.S.A. 72:5012 (1975).CrossRefGoogle Scholar
  38. 38.
    Jensen, M. S., and Bainton, D. F., Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte, J. Cell Biol. 56:379 (1973).PubMedCrossRefGoogle Scholar
  39. 39.
    Muschel, L. H., Carey, W. F., and Baron, L. S., Formation of bacterial protoplasts by serum components, J. Immunol. 82:38 (1959).PubMedGoogle Scholar
  40. 40.
    Rowley, D., Endotoxins and bacterial virulence, J. Infect. Dis. 123:317 (1971).PubMedCrossRefGoogle Scholar
  41. 41.
    Brumfitt, W., and Glynn, A. A., Intracellular killing of Micrococcus lysodeikticus by macrophages and PMNs, Br. J. Exp. Pathol. 42:408 (1961).PubMedGoogle Scholar
  42. 42.
    Griffith, E., Mechanism of action of specific antiserum of Pasteurella septica. Selective inhibition of net macromolecular synthesis and its reversal by iron compounds, Eur. J. Biochem. 23:69 (1971).CrossRefGoogle Scholar
  43. 43.
    Zeya, H. I., and Spitznagel, J. K., Arginine-rich proteins of polymorphonuclear leukocyte lysosomes, J. Exp. Med. 127:927 (1968).PubMedCrossRefGoogle Scholar
  44. 44.
    Odeberg, H., and Olsson, I., Antibacterial activity of cationic proteins from human granulocytes, J. Clin. Invest. 56:1118 (1975).PubMedCrossRefGoogle Scholar
  45. 45.
    DeWald, B., Rindler-Ludwig, R., Bretz, U., and Baggiolini, M., Subcellular localization and heterogeneity of neutral proteases in neutrophilic polymorphonuclear leukocytes, J. Exp. Med. 141:709 (1975).PubMedCrossRefGoogle Scholar
  46. 46.
    Mandell, G. C., Intraphagosomal pH of human polymorphonuclear neutrophils, Proc. Soc. Exp. Biol. Med. 134:447 (1970).PubMedGoogle Scholar
  47. 47.
    Strauss, R. G., Anomaly of neutrophil morphology with impaired function, N. Engl. J. Med. 290:478 (1974).PubMedCrossRefGoogle Scholar
  48. 48.
    Spitznagel, J. K., Cooper, M. R., McCall, A. E., et al., Selective deficiency of granules associated with lysozyme and lactoferrin in human polymorphs with reduced microbicidal capacity, J. Clin. Invest. 51 (abstract 305): 93a (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Patrick Murphy
    • 1
  1. 1.The Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations