Inflammation and Chemotaxis

  • Patrick Murphy


We saw in Chapter 2 that neutrophils are mobile cells that spontaneously explore their environment in a random way and that can be induced to migrate in particular directions by suitable stimuli. This chapter will be concerned with the nature of the stimuli and with the processes by which neutrophils accumulate at inflammatory sites.


Vascular Permeability Complement Component Chemotactic Factor Classical Pathway Chemotactic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading

  1. Zweifach, B.W., Grant, L., and McCluskey, R. T. (eds.), The Inflammatory Response, 2nd ed., 3 volumes, Academic Press, New York, 1973–1974.Google Scholar


  1. 1.
    Zweifach, B. W., Functional Behaviour of the Microcirculation, Thomas, Springfield, Illinois, 1961.Google Scholar
  2. 2.
    Atherton, A., and Born, G. V. R., Relationship between the velocity of rolling granulocytes and that of the blood flow in venules, J. Physiol. 233:157 (1973).PubMedGoogle Scholar
  3. 3.
    Intaglietta, M., Pawula, R. F., and Tompkins, W. R., Pressure measurements in the mammalian microvasculature, Microvase. Res. 2:212 (1970).CrossRefGoogle Scholar
  4. 4.
    Luft, J. H., Capillary permeability—structural considerations, in: Zweifach, B.W., Grant, L., and McCluskey, R. T. (eds.), The Inflammatory Response, 2nd ed., Academic Press, New York, 1973, p. 47.Google Scholar
  5. 5.
    Majno, G., Shea, S. M., and Leventhal, M., Endothelial contraction induced by hista-mine-type mediators, J. Cell Biol. 42: 647 (1969).PubMedCrossRefGoogle Scholar
  6. 6.
    Majno, G., and Palade, G. E., Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study. II. The site of action of histamine and serotonin along the vascular tree: A topographic study, J. Biophys. Biochem. Cytol. 11:571, 607 (1961).PubMedCrossRefGoogle Scholar
  7. 7.
    Wilhelm, D. L., and Mason, B., The role of endogenous permeability factors in mild thermal injury, Br. J. Exp. Pathol. 41:487 (1960).PubMedGoogle Scholar
  8. 8.
    Marchesi, V. T., and Florey, H. W., Electron microscopic observations on the emigration of leukocytes, Q. J. Exp. Physiol. 45:343 (1960).Google Scholar
  9. 9.
    Grant, L., and Epstein, F., apparently unpublished; quoted in: The Inflammatory Process, 2nd ed. (see ref. 4), Chap. 1, p. 34.Google Scholar
  10. 10.
    Williamson, J. R., and Grisham, J. W., Leukocytic emigration from inflamed capillaries, Nature 188:1203 (1960).PubMedCrossRefGoogle Scholar
  11. 11.
    Florey, H. W., Inflammation in: Florey, H. W. (ed.), General Pathology, Saunders, Philadelphia, 1970, Chap. 3, p. 103.Google Scholar
  12. 12.
    Spector, W. G., and Willoughby, D. A., The inflammatory response, Bacteriol. Rev. 27:117 (1963).PubMedGoogle Scholar
  13. 13.
    Cochrane, C. G., and Wuepper, K. D., The first component of the kinin forming system in human and rabbit plasma. Its relationship to the Hageman factor, J. Exp. Med. 134:986 (1971).PubMedCrossRefGoogle Scholar
  14. 14.
    Spragg, J., and Austen, K. W., The preparation of human kininogen. II. Further characterization of purified human kininogen, J. Immunol. 107:1512 (1971).PubMedGoogle Scholar
  15. 15.
    di Rosa, M., Giroud, J. P., and Willoughby, D. A., Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J. Pathol. 104:15 (1971).PubMedCrossRefGoogle Scholar
  16. 16.
    Vane, J. R., Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs, Nature London New Biol. 231:232 (1971).Google Scholar
  17. 17.
    Hurley, J. V., Acute Inflammation, Williams and Wilkins, Baltimore, 1972, Chap. 5, p. 33.Google Scholar
  18. 18.
    Dukes, M., Chan, W. C., and Willoughby, D. A., The effect of various immunosuppressive agents on the vascular and cellular response to carrageenan in the rat, J. Pathol. 109:151 (1973).PubMedCrossRefGoogle Scholar
  19. 19.
    Kaley, G., and Wiener, R., Effect of prostaglandin E1 on leukocyte migration, Nature London New Biol. 234:114 (1971).Google Scholar
  20. 20.
    Allison, F., Smith, M. R., and Wood, W. B., The inflammatory reaction to thermal injury as observed in the rabbit ear chamber, J. Exp. Med. 102:655 (1955).PubMedCrossRefGoogle Scholar
  21. 21.
    Harris, H., Mobilization of defensive cells in inflammatory tissue, Bacteriol. Rev. 24:3 (1960).PubMedGoogle Scholar
  22. 22.
    Ryan, G. B., and Hurley, J. V., The Chemotaxis of polymorphonuclear leukocytes towards damaged tissue, Br. J. Exp. Pathol. 47:530 (1966).PubMedGoogle Scholar
  23. 23.
    Boyden, S. V., The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes, J. Exp. Med. 115:453 (1962).PubMedCrossRefGoogle Scholar
  24. 24.
    Gallin, J. I., Clark, R. A., and Kimball, H. R., Granulocyte Chemotaxis: An improved in vitro assay employing 51Cr labelled granulocytes, J. Immunol. 110:233 (1973).PubMedGoogle Scholar
  25. 25.
    Keller, H. V., Hess, M. W., and Cottier, H., The in vitro assessment of leukocyte Chemotaxis, Antibiot. and Chemother. 19:112 (1974).Google Scholar
  26. 26.
    Zigmond, S., and Hirsch, J. G., Leukocyte locomotion and Chemotaxis, J. Exp. Med. 137:387 (1973).PubMedCrossRefGoogle Scholar
  27. 27.
    Keller, H. V., and Sorkin, E., On the chemotactic effect of bacteria, Int. Arch. Allergy Appl. Immunol. 31:505 (1967).CrossRefGoogle Scholar
  28. 28.
    Mayer, M. M., The complement system, Sci. Am. 229:54 (1973).PubMedCrossRefGoogle Scholar
  29. 29.
    Wardlaw, A. C., and Pillemer, L., The bactericidal activity of the properdin system, J. Exp. Med. 103:553 (1956).PubMedCrossRefGoogle Scholar
  30. 30.
    Ward, P. A., Cochrane, C. G., and Müller-Eberhard, H. J., The role of serum complement in Chemotaxis of leukocytes in vitro,J. Exp. Med. 122:327 (1965).PubMedCrossRefGoogle Scholar
  31. 31.
    Shin, H. S., Snyderman, R., Friedman, E., et al., Chemotactic and anaphylatoxic fragment cleaved from the fifth component of complement, Science 162:361 (1968).PubMedCrossRefGoogle Scholar
  32. 32.
    Clark, R. A., Frank, M. M., and Kimball, H. R., Generation of chemotactic factors in guinea pig serum via activation of the classical and alternate complement pathways, Clin. Immunol. Immunopathol. 1:414 (1973).PubMedCrossRefGoogle Scholar
  33. 33.
    Snyderman, R., Phillips, J. K., and Mergenhagen, S. E., Role of C5 in the accumulation of polymorphonuclear leukocytes in inflammatory exudates, J. Exp. Med. 134:1131 (1971).PubMedCrossRefGoogle Scholar
  34. 34.
    Hill, J. H., and Ward, P. A., The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats, J. Exp. Med. 133:885 (1971).PubMedCrossRefGoogle Scholar
  35. 35.
    Ward, P. A., and Zvaifler, N. J., Complement-derived leukotactic factors in inflammatory synovial fluids of humans, J. Clin. Invest. 50:606 (1971).PubMedCrossRefGoogle Scholar
  36. 36.
    Wilkinson, P. C., Recognition of protein structure in leukocyte Chemotaxis, Nature 244:512 (1973).PubMedCrossRefGoogle Scholar
  37. 37.
    Kay, A. B., Pepper, D. S., and McKenzie, R., The identification of fibrinopeptide B as a chemotactic agent derived from human fibrinogen, Br. J. Haematol. 27:669 (1974).PubMedCrossRefGoogle Scholar
  38. 38.
    Kaplan, A. P., Kay, A. B., and Austen, K. F., The appearance of chemotactic activity for human neutrophils by the conversion of human prekallikrein to kallikrein, J. Exp. Med. 135:81 (1972).PubMedCrossRefGoogle Scholar
  39. 39.
    Yamamotu, S., Yoshinaga, M., and Hayashi, H., The natural mediator for PMN emigration in inflammation, Immunology 20:803 (1971).Google Scholar
  40. 40.
    McCall, E., and Youlten, L. J. F., Prostaglandin E1 synthesis by phagocytosing rabbit polymorphonuclear leukocytes, J. Physiol. 234:98P (1973).PubMedGoogle Scholar
  41. 41.
    Becker, E. L., The relationship of the chemotactic behaviour of the complement-derived factors, C3a, C5a and C567, and a bacterial chemotactic factor to their ability to activate the proesterase 1 of rabbit polymorphonuclear leukocytes, J. Exp. Med. 135:376 (1972).PubMedCrossRefGoogle Scholar
  42. 42.
    Goetzl, E. J., Gigli, I., Wasserman, S., et al., A neutrophil immobilizing factor derived from human leukocytes, J. Immunol. 111:938 (1973).PubMedGoogle Scholar
  43. 43.
    Ward, P. A., and Schlegel, R. S., Impaired leukotactic responsiveness in a child with recurrent infections, Lancet 2:344 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Patrick Murphy
    • 1
  1. 1.The Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations