Morphology and Cellular Physiology of Neutrophil Granulocytes

  • Patrick Murphy


Mature neutrophils, as found in normal blood, are very uniform cells with a diameter of 12–15 μm as measured in smears on glass slides. In tissue, the cells are rounded (presumably) and appear somewhat smaller. They are highly differentiated and have some unique structural features.


Neutrophil Granulocyte Cellular Physiology Azurophil Granule Mature Neutrophil Specific Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading

  1. Bessis, M., Living Blood Cells and Their Ultrastructure, translated by R. I. Weed, Springer-Verlag, Berlin, 1973.Google Scholar


  1. 1.
    Cline, M. J., Isolation and characterization of RNA from human leukocytes, J. Lab. Clin. Med. 68:33 (1966).PubMedGoogle Scholar
  2. 2.
    Cohn, Z. A., and Morse, S. I., Functional and metabolic properties of polymorphonuclear leukocytes. I. Observations on the requirements and consequences of particle ingestion, J. Exp. Med. 111:667 (1960).PubMedCrossRefGoogle Scholar
  3. 3.
    Kirschner, R. H., Getz, G. S., and Evans, A. E., Leukocyte mitochondria: Function and biogenesis, Enzyme 13:56 (1972).PubMedGoogle Scholar
  4. 4.
    Stjernholm, R. L., and Manek, R. C., Carbohydrate metabolism in leukocytes. XIV. Regulation of pentose cycle activity and glycogen metabolism during phagocytosis, J. Retic. End. Soc. 8:550 (1970).Google Scholar
  5. 5.
    Winkler, K., Heller-Schöch, G., and Neth, R., Protein synthesis in Human leukocytes. IV. Mutual inhibition of amino acid incorporation by amino acids in cell suspensions and cell-free systems, Z. Physiol. Chem. 353:787 (1972).CrossRefGoogle Scholar
  6. 6.
    Tryfiates, G. P., and Lazlo, J., Human leukemic polyribosomes, Proc. Soc. Exp. Biol. Med. 124:1125 (1967).PubMedGoogle Scholar
  7. 7.
    Baggiolini, M., Hirsch, J. G., and de Duve, C., Further biochemical and morphological studies of granule fractions from rabbit heterophil leukocytes, J. Cell Biol. 45:586 (1970).PubMedCrossRefGoogle Scholar
  8. 8.
    Masson, P. L., Heremans, J. F., and Schonne, E., Lactoferrin, an iron-binding protein in neutrophilic leukocytes, J. Exp. Med. 130:643 (1969).PubMedCrossRefGoogle Scholar
  9. 9.
    Spitznagel, J. K., Dalldorf, F. G., Leffell, M. S., et al., Characterization of azurophil and specific granules purified from human polymorphonuclear leukocytes, Lab. Invest. 30:774 (1974).PubMedGoogle Scholar
  10. 10.
    Ramsey, W. S., Locomotion of human polymorphonuclear leukocytes, Exp. Cell Res. 72:489 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    Carter, S. B., Principles of cell motility: The direction of cell movement and cancer invasion, Nature London 208:1183 (1965).PubMedCrossRefGoogle Scholar
  12. 12.
    Senda, N., Shibata, N., Tatsumi, N., et al., A contractile protein from leucocytes: Its extraction and some of its properties, Biochim. Biophys. Acta 181:191 (1969).PubMedGoogle Scholar
  13. 13.
    Stossel, T. P., and Pollard, T. D., Myosin in polymorphonuclear leukocytes, J. Biol. Chem. 248:8288 (1973).PubMedGoogle Scholar
  14. 14.
    Tatsumi, N., Shibata, N., Okamura, Y., et al., Actin and myosin A from leukocytes, Biochim. Biophys. Acta 305:433 (1973).PubMedCrossRefGoogle Scholar
  15. 15.
    Ramsey, W. S., and Harris, A., Leukocyte locomotion and its inhibition by anti-mitotic drugs, Exp. Cell Res. 82:262 (1973).PubMedCrossRefGoogle Scholar
  16. 16.
    Peterson, S. C., and Noble, P. B., A two-dimensional random walk analysis of human granulocyte movement, Biophys. J. 12:1048 (1972).PubMedCrossRefGoogle Scholar
  17. 17.
    Ramsey, W. S., Analysis of individual leukocyte behaviour during Chemotaxis, Exp. Cell Res. 70:129 (1972).PubMedCrossRefGoogle Scholar
  18. 18.
    Adler, J., Chemoreceptors in bacteria, Science 166:1588 (1969).PubMedCrossRefGoogle Scholar
  19. 19.
    Ramsey, W. S., Retraction fibers and leucocyte Chemotaxis, Exp. Cell Res. 86:184 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    Zigmond, S., Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes, Nature London 249:450 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    Tsung, P. K., Hermina, N., and Weissmann, G., cIMP and cAMP dependent protein kinase from human PMN leukocytes, Biochem. Biophys. Res. Commun. 49:1657 (1972).PubMedCrossRefGoogle Scholar
  22. 22.
    Bandmann, U., Rydgren, L., and Norber, B., The differences between random movement and Chemotaxis; effects of antitubulins on neutrophilic granulocyte locomotion, Exp. Cell Res. 88:63 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    Allison, A. C., Mechanism of movement and maintenance of polarity in leucocytes, Antibiot. Chemother. Washington D. C. 19:191 (1974).Google Scholar
  24. 24.
    Weissmann, G., Zurier, R. B., Spieler, P. J., et al., Mechanisms of lysosomal enzyme release from leukocytes exposed to immune complexes and other particles, J. Exp. Med. 134:149S (1971).PubMedGoogle Scholar
  25. 25.
    Ignarro, L. J., and George, W. J., Mediation of immunologic discharge of lysosomal enzymes from human neutrophils by guanosine 3′, 5′-monophosphate, J. Exp. Med. 140:225 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    Elsbach, P., Increased synthesis of phospholipid during phagocytosis, J. Clin. Invest. 47:2217 (1968).PubMedCrossRefGoogle Scholar
  27. 27.
    Wurster, N., Elsbach, P., Simon, E. J., et al., The effects of the morphine analogue levorphanol on leukocytes, J. Clin. Invest. 50:1091 (1971).PubMedCrossRefGoogle Scholar
  28. 28.
    Zucker-Franklin, D., Elsbach, P., and Simon, E. J., The effect of the morphine analog levorphanol on phagocytosing leukocytes—a morphologic study, Lab. Invest. 25:415 (1971).PubMedGoogle Scholar
  29. 29.
    Smolen, J. E., and Shohet, S. B., Remodelling of granulocyte membrane fatty acids during phagocytosis, J. Clin. Invest. 53:726 (1974).PubMedCrossRefGoogle Scholar
  30. 30.
    Elsbach, P., Patriarca, P., Pettis, P., et al., The appearance of lecithin 32P, synthesized from lysolecithin 32P, in phagosomes of polymorphonuclear leukocytes, J. Clin. Invest. 51:1910(1972).PubMedCrossRefGoogle Scholar
  31. 31.
    Oliver, J. M., Ukena, T. E., and Berlin, R. D., Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces, Proc. Nat. Acad. Sci. U.S.A. 71:394 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Patrick Murphy
    • 1
  1. 1.The Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations