An Adaptive Semi-Iterative Method for Symmetric Semidefinite Linear Systems

  • D. Calvetti
  • L. Reichel
  • Q. Zhang
Part of the ISNM International Series of Numerical Mathematics book series (ISNM, volume 119)


The development of semi-iterative methods for the solution of large linear nonsingular systems has received considerable attention. However, these methods generally cannot be applied to the solution of singular linear systems. We present a new adaptive semi-iterative method tailored for the solution of large sparse symmetric semidefinite linear systems. This method is a modification of Richardson iteration and requires the determination of relaxation parameters. We want to choose relaxation parameters that yield rapid convergence, and this requires knowledge of an interval [a, b] on the real axis that contains most of the nonvanishing eigenvalues of the matrix. Such an interval is determined during the iterations by computing certain modified moments. Computed examples show that our adaptive iterative method typically requires a smaller number of iterations and much fewer inner product evaluations than an appropriate modification of the conjugate gradient algorithm of Hestenes and Stiefel. This makes our scheme particularly attractive to use on certain parallel computers on which the communication required for inner product evaluations constitutes a bottleneck.


Relaxation Parameter Modify Moment Conjugate Gradient Algorithm Initial Interval Roundoff Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ashby S. F., Manteuffel T. A., Saylor P. E. A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal., 27: 1542–1568, 1990.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Barker G. P., Yang S.-J. Semi-iterative and iterative methods for singular M-matrices. SIAM J. Matrix Anal. Appl, 9: 168–180, 1988.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Calvetti D., Reichel L. Adaptive Richardson iteration based on Leja points. Math. Comp. To appear.Google Scholar
  4. [4]
    Calvetti D., Reichel L., Zhang Q. Conjugate gradient algorithms for symmetric inconsistent linear systems. In Proceedings of the Lanczos Centenary Conference. SIAM, Philadelphia. To appear. M. Chu, R. Plemmons, D. Brown and D. Ellison.Google Scholar
  5. [5]
    Dax A. The convergence of linear stationary iterative processes for solving singular unstructured systems of linear equations. SIAM Review, 32: 611–635, 1990.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Edrei A. Sur les déterminants récurrents et les singularités d’une fonction donnée par son développement de Taylor. Composito Math., 7: 20–88, 1939.MathSciNetMATHGoogle Scholar
  7. [7]
    Eiermann M., Marek I., Niethammer W. On the solution of singular linear systems of algebraic equations by semi-iterative methods. Numer. Math., 53: 265–283, 1988.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Eiermann M., Niethammer W., Varga R. S. A study of semi-iterative methods for nonsymmetric systems of linear equations. Numer. Math., 47: 505–533, 1985.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Eiermann M., Reichel L. On the application of orthogonal polynomials to the iterative solution of singular linear systems of equations. In Vector and Parallel Computing, pages 285–297. Ellis Horwood, Chichester, 1989. J. Dongarra, I. Duff, P. Gaffney and S. McKee, eds.Google Scholar
  10. [10]
    Gautschi W. On generating orthogonal polynomials. SIAM J. Sci. Stat. Comput., 3: 289–317, 1982.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Golub G. H., Kent M. D. Estimates of eigenvalues for iterative methods. Math. Comp., 53: 619–626, 1989.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Golub G. H., Welsch J. H. Calculation of Gauss quadrature rules. Math. Comp., 23: 221–230, 1969.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Hanke M., Hochbruck M. A Chebyshev-like semi-iteration for inconsistent linear systems. Elec. Trans. Numer. Anal., 1: 89–103, 1993.MathSciNetMATHGoogle Scholar
  14. [14]
    Kaaschieter E. F. Preconditioned conjugate gradients for solving singular systems. J. Comput. Appl. Math., 24: 265–275, 1988.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Leja F. Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme. Ann. Polon. Math., 4: 8–13, 1957.MathSciNetMATHGoogle Scholar
  16. [16]
    Lewis J. G., Rehm R. G. The numerical solution of a nonseparable elliptic partial differential equation by preconditioned conjugate gradients. J. Res. Nat Bureau Standards, 85: 367–390, 1980.MathSciNetMATHGoogle Scholar
  17. [17]
    Reichel L. The application of Leja points to Richardson iteration and polynomial preconditioning. Linear Algebra Appl., 154–156: 389–414, 1991.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Schreiber R. Generalized iterative methods for semidefinite linear systems. Linear Algebra Appl., 62: 219–230, 1984.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Varga R.S. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962.Google Scholar
  20. [20]
    Wozniakowski H. Numerical stability of the Chebyshev method for the solution of large linear systems. Numer. Math., 28: 191–209, 1977.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser 1994

Authors and Affiliations

  • D. Calvetti
    • 1
  • L. Reichel
    • 2
  • Q. Zhang
    • 2
  1. 1.Department of Pure and Applied MathematicsStevens Institute of TechnologyHobokenUSA
  2. 2.Department of Mathematics and Computer ScienceKent State UniversityKentUSA

Personalised recommendations