Electron-Boundary Scattering in Quantum Wires

  • M. L. Roukes
  • T. J. Thornton
  • A. Scherer
  • B. P. Van der Gaag
Part of the NATO ASI Series book series (NSSB, volume 231)


To reduce the dimensionality of an electronic system it must be confined within artificially imposed boundaries. In the most idealized consideration of the problem, the properties of confined electrons depend solely upon the volume containing them. In all real systems, however, the characteristics of the boundaries themselves play a significant role in the physics observed. Recent advances in epitaxial growth techniques now permit nearly ideal heterointerfaces to be created over appreciable areas. But even for these, the crystallographic (and therefore the electronic) properties at the surfaces are quite different that those of the bulk. Recent dramatic demonstrations of surface reconstructions obtained through scanning tunneling microscopy provide a particularly striking example. However the more general situation is even far from this ideal. Any real boundary, when viewed over a large enough area, always reveals randomness. In the case of the best epitaxially-grown interfaces this will be manifested as a finite domain size for the last few atomic layers, as schematically depicted in Fig. 1 (left). The edges of these domains delineate random patches of surfaces in registry with the underlying crystal. A quantum well between two such interfaces would be characterized by a thickness which varies stochastically across the growth plane.


Microwave Anisotropy Coherence GaAs Flare 


  1. Ando, T., 1977, J. Phys. Soc. Japan, 43, 1616.ADSCrossRefGoogle Scholar
  2. Avishai, Y., Band, Y.B., 1989, Phys. Rev. Lett. 62, 2527.ADSCrossRefGoogle Scholar
  3. Baranger, H.U., Stone, A.D., 1989a, in Science and Technology of 1- and 0-Dimensional Semiconductors, S.P. Beaumont and C.M. Sotomayor-Torres, eds., Plenum, London.Google Scholar
  4. Baranger, H.U., Stone, A.D., 1989b, Phys. Rev. Lett. 63, 414.ADSCrossRefGoogle Scholar
  5. Beenakker, C.W.J., van Houten, H., 1989a, Phys. Rev. Lett. 63, 1857.; also in this book.Google Scholar
  6. Beenakker, C.W.J., van Houten, H., 1989b, Phys. Rev. B39, 10445.CrossRefGoogle Scholar
  7. Berggren 1986, Phys. Rev. Lett. 57, 1769.Google Scholar
  8. Büttiker, M., 1985, Phys. Rev. B32, 1846.CrossRefGoogle Scholar
  9. Büttiker, M., 1986, Phys. Rev. Lett. 57, 1761.ADSCrossRefGoogle Scholar
  10. Chambers, 1969, in The Physics of Metals, J.M. Ziman, ed. Cambridge Univ. Press, U.K.Google Scholar
  11. Chang, A.M., Chang, T.Y., 1989, Phys. Rev. Lett. 63, 996.ADSCrossRefGoogle Scholar
  12. Choi, K.K. et al., 1986, Phys. Rev. B33, 8216.ADSCrossRefGoogle Scholar
  13. Ditlefsen, E., Lothe, J., 1966, Philos. Mag. 14, 759.ADSCrossRefGoogle Scholar
  14. Doezema, R., Koch, J.R., 1972, Phys. Rev. B5, 3866.ADSCrossRefGoogle Scholar
  15. Ford, C.J.B., et al., 1988, Phys. Rev. B38, 8518.ADSCrossRefGoogle Scholar
  16. Ford, C.J.B., et al., 1989, Phys. Rev. Lett. 62, 2724.ADSCrossRefGoogle Scholar
  17. Forsvoll, K., Holwech, I., 1964, Philos. Mag. 9, 435.ADSCrossRefGoogle Scholar
  18. Friedman, A.N., Koenig, S.H., 1960, I.B.M. J. Res. Dev., 4, 158.Google Scholar
  19. Fuchs, K., 1938, Proc. Camb. Philos. Soc. 34, 100.ADSCrossRefGoogle Scholar
  20. Hartstein, A., et al., 1976, Surf. Sci. 58, 178.ADSCrossRefGoogle Scholar
  21. Hensel, J.C., et al., 1985, Phys. Rev. Lett. 54, 1840.ADSCrossRefGoogle Scholar
  22. Khaikin, M.S., 1960, Sov. Phys. J.E.T.P. 12, 152.Google Scholar
  23. Kirczenow, G., 1989a, Phys. Rev. Lett. 62, 1920.ADSCrossRefGoogle Scholar
  24. Kirczenow, G., 1989b, Phys. Rev. Lett. 62, 2993.ADSCrossRefGoogle Scholar
  25. Kirczenow, G., 1989c, Solid State Comm. 71, 469.ADSCrossRefGoogle Scholar
  26. Koch, J.F., Kip, G., 1965, in Low Temperature Physics, LT9, edited by J.G. Daunt, Plenum Press, Inc., New York, p. B818Google Scholar
  27. Koch, J.F., Kip, G., Kuo, C.C., 1966, Phys. Rev. 143, 470.ADSCrossRefGoogle Scholar
  28. Kubo, R., 1962, J. Phys. Soc. Japan 17, 975.MathSciNetADSMATHCrossRefGoogle Scholar
  29. MacDonald, D., Sarginson, K., 1950, Proc. Roy. Soc. London A203, 223.ADSMATHCrossRefGoogle Scholar
  30. Nixon, J.A., Davies, J.H., 1989, unpublished.Google Scholar
  31. Pippard, A.B., 1957, Phil. Trans. Roy. Soc. A 250, 325.ADSCrossRefGoogle Scholar
  32. Pippard, A.B., 1989, Magnetoresistance in Metals, Cambridge Univ. Press, U.K.Google Scholar
  33. Prange, R.E., Nee, T.W., 1968, Phys. Rev. 168, 779.ADSCrossRefGoogle Scholar
  34. Ravenhall, D.G., et al., 1989, Phys. Rev. Lett. 62, 1920.CrossRefGoogle Scholar
  35. Roukes, M.L., et al, 1987, Phys. Rev. Lett. 57, 3011.ADSCrossRefGoogle Scholar
  36. Roukes, M.L., 1989a, in Science and Technology of 1- and 0-Dimensional Semiconductors S.P. Beaumont and C.M. Sotomayor-Torres, eds., Plenum, London.Google Scholar
  37. Roukes, M.L., 1989b, submitted to Phys. Rev. Lett.Google Scholar
  38. Roukes, M.L., 1990, unpublished.Google Scholar
  39. Sakaki, H., 1980, Japan. J. Appl. Phys. 19, 1735.ADSCrossRefGoogle Scholar
  40. Scherer, A., and Roukes, M.L., 1989, Appi. Phys. Lett. 55, 377.ADSCrossRefGoogle Scholar
  41. Schreiffer, J.R., 1957, in Semiconductor Surface Physics, edited by R. H. Kingston, Univ. of Penn. Press, Philadelphia, p. 55Google Scholar
  42. Simmons, J.A., 1988, Surf. Sci. 196, 81.Google Scholar
  43. Soffer, S.B., 1967, J. Appl. Phys. 28, 1710.ADSCrossRefGoogle Scholar
  44. Stone, I., 1898, Phys. Rev. 6, 1.ADSGoogle Scholar
  45. Takagaki, Y., et al., 1988, Solid State Comm. 68, 1051.ADSCrossRefGoogle Scholar
  46. Tesanovic, Z., et al., 1987, Phys. Rev. Lett. 57, 2760.ADSCrossRefGoogle Scholar
  47. Thomson, J.J., 1901, Proc. Camb. Phil. Soc. 11, 120.Google Scholar
  48. Thornton, T.J., et al., 1986, Phys. Rev. Lett. 56, 1181.CrossRefGoogle Scholar
  49. Thornton, T.J., 1989a, in Science and Technology of 1- and 0-Dimensional Semiconductors S.P. Beaumont and C.M. Sotomayor-Torres, eds., Plenum, London.Google Scholar
  50. Thornton, T.J., et al., 1989b, Phys. Rev. Lett. 63, 2128.ADSCrossRefGoogle Scholar
  51. Thornton, T.J., 1990, unpublished.Google Scholar
  52. Timp, G., et al., 1988, Phys. Rev. Lett. 60, 2081.ADSCrossRefGoogle Scholar
  53. Thornton, T.J., et al., 1989, Phys. Rev. Lett. 63, 2268.ADSCrossRefGoogle Scholar
  54. Trivedi, N., and Ashcroft, N.W., 1988, Phys. Rev. B38, 12298.CrossRefGoogle Scholar
  55. Tsoi, V.S., 1974a, J.E.T.P. Letts. 19, 70.ADSGoogle Scholar
  56. Tsoi, V.S., 1974b, Sov. Phys. J.E.T.P. 41, 927.ADSGoogle Scholar
  57. van Houten, H., et al., 1986, Appl. Phys. Lett. 49, 1781.ADSCrossRefGoogle Scholar
  58. van Wees, B., et al., 1988, Phys. Rev. Lett. 60, 848.ADSCrossRefGoogle Scholar
  59. Wharam, D., et al., 1988, J. Phys. C, 21, L209.ADSCrossRefGoogle Scholar
  60. Wharam, D., et al., 1989, Phys. Rev. B., B39, 6283.ADSCrossRefGoogle Scholar
  61. Zheng, H.Z., 1986, Phys. Rev. B34, 5635.Google Scholar
  62. Ziman, J.M., 1960, Electrons and Phonons, Oxford. Univ. Press, U.K., Chapter X I.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. L. Roukes
    • 1
  • T. J. Thornton
    • 1
  • A. Scherer
    • 1
  • B. P. Van der Gaag
    • 1
  1. 1.BellcoreRed BankUSA

Personalised recommendations