Advertisement

Semi-Classical Theory of Magnetoresistance Anomalies in Ballistic Multi-Probe Conductors

  • C. W. J. Beenakker
  • H. van Houten
Part of the NATO ASI Series book series (NSSB, volume 231)

Abstract

The regime of ballistic transport in a two-dimensional electron gas (2DEG) was opened up a few years ago, when it became possible technically to reduce the dimensions of a conductor to below a mean free path. In this regime the resistance is determined by the geometry of the conductor, to the extent that impurity scattering can be neglected. In the usual regime of diffusive transport, the Hall bar geometry (a straight current-carrying channel with small side contacts for voltage drop measurements) is most convenient to determine the various components of the resistivity tensor separately. A down-scaled Hall bar was therefore the natural first choice as a geometry to study ballistic transport in a 2DEG (Timp et al., 1987; Roukes et al., 1987; Takagaki et al., 1988; Simmons et al., 1988; Chang et al., 1988; Ford et al., 1988). The point contact geometry (a short and narrow constriction) was an alternative choice (Van Wees et al., 1988; Wharam et al., 1988; Van Houten et al., 1988a). As it turns out, it is much easier to understand ballistic transport through a point contact than through a narrow Hall bar. The reason is that the resistance of a point contact is determined mainly by the number of occupied 1-dimensional subbands at the narrowest point of the constriction, and not so much by its shape (cf. the very similar results of Van Wees et al. (1988) and Wharam et al. (1988) on the quantized resistance of point contacts of a rather different design). The resistances measured in a narrow channel geometry, in contrast, are mainly determined by scattering at the junction with the side probes (Timp et al., 1988), which is different for junctions of different shape. The strong dependence of the low-field Hall resistance on the junction shape was demonstrated theoretically by Baranger and Stone (1989), and experimentally by Ford et al. (1989a) and Chang et al. (1989).

Keywords

Ballistic Transport Hall Resistance Injection Angle Hall Plateau Side Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akera, H., Ando, T., 1989, Phys.Rev.B, 39: 5508.ADSCrossRefGoogle Scholar
  2. Avishai, Y., Band, Y.B., 1989, Phys.Rev.Lett., 62: 2527.Google Scholar
  3. Baranger, H.U., Stone, A.D., 1989, Phys.Rev.Lett., 63:414; also in: “Science and Engineering of I- and 0-Dimensional Semiconductors”, S.P. Beaumont and C.M. Sotomayor-Torres, eds., Plenum, London, to be published.Google Scholar
  4. Beenakker, C.W.J., Van Houten, H., 1988, Phys.Rev.Lett., 60:2406; see also, Beenakker, C.W.J., Van Houten, H., Van Wees, B.J., 1989, Superlattice s and Microstructures, 5: 127.ADSGoogle Scholar
  5. Beenakker. C.W.J., Van Houten, H., 1989a, Phys.Rev.B, 39:10445; see also, Van Houten, H., and Beenakker, C.W.J., in: “Nanostructure Physics and Fabrication”, M.A. Reed and W.P. Kirk, eds., Academic Press, New York, to be published.Google Scholar
  6. Beenakker, C.W.J., Van Houten, H., 1989b, Phys.Rev.Lett., 63: 1857.Google Scholar
  7. Bleher, S., Ott, E., Grebogi, C., 1989, Phys.Rev.Lett., 63: 919.ADSCrossRefGoogle Scholar
  8. Büttiker, M., 1986, Phys.Rev.Lett., 57:1761; 1988, IBM J.Res.Dev., 32: 317.ADSGoogle Scholar
  9. Büttiker, M., 1988, Phys.Rev.B, 38: 9375.ADSCrossRefGoogle Scholar
  10. Chang, A.M., Timp, G., Howard, R.E., Behringer, R.E., Mankiewich, P.M., Cunningham, J.E., Chang, T.Y., Chelluri, B., 1988, Superlattices and Microstructures, 4: 515.ADSCrossRefGoogle Scholar
  11. Chang, A.M., Chang, T.Y., Baranger, H.U., 1989, Phys.Rev.Lett., 63: 996.ADSCrossRefGoogle Scholar
  12. Ford, C.J.B., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Peacock, D.C., Ritchie, D.A., Frost, J.E.F., Jones, G.A.C., 1988, Phys.Rev.B, 38: 8518.ADSCrossRefGoogle Scholar
  13. Ford, C.J.B.. Washburn, S., Büttiker, M., Knoedler, C.M., Hong, J.M., 1989a, Phys.Rev.Lett., 62: 2724.ADSCrossRefGoogle Scholar
  14. Ford, C.J.B., Washburn, S., Büttiker, M., Knoedler, C.M., Hong, J.M., 1989b, Surf.Sci., to be published.Google Scholar
  15. Isawa, Y., 1989, preprint.Google Scholar
  16. Johnston, R., and Schweitzer, L., 1989, J.Phys.Condensed Matter, 1: 4465.ADSCrossRefGoogle Scholar
  17. Kirczenow, G., 1989a, Phys.Rev.Lett., 62: 2993.ADSCrossRefGoogle Scholar
  18. Kirczenow, G., 1989b, Solid State Comm., 71: 469.ADSCrossRefGoogle Scholar
  19. Komiyama, S., Hirai, H., 1989, preprint.Google Scholar
  20. Korzh, S.A., 1975, Sov.Phys.JETP, 41: 70.ADSGoogle Scholar
  21. Landauer, R., 1957, IBM J.Res.Dev., 1: 223; 1988, 32: 306.CrossRefGoogle Scholar
  22. MacDonald, D.K.C., 1949, Nature, 163: 637;ADSCrossRefGoogle Scholar
  23. see also, Pippard, A.B., 1989, “Magnetoresistance in Metals”, Cambridge University Press, Cambridge.Google Scholar
  24. Molenkamp, L.W., Staring, A.A.M., Beenakker, C.W.J., Eppenga, R., Timmering, C.E., Williamson, J.G., Harmans, C.J.P.M., Foxon, C.T., 1989, Phys.Rev.B, to be published.Google Scholar
  25. Peeters, F.M., 1988, Phys.Rev.Lett., 61: 589; see also, 1989, Superlattices and Microstructures, 6: 217.Google Scholar
  26. Peeters, F.M., 1989, in: “Science and Engineering of 1- and 0-Dimensional Semiconductors”, S.P. Beaumont C.M. Sotomayor-Torres, eds., Plenum, London, to be published.Google Scholar
  27. Phillips, J.C., 1988, Phil.Mag.B, 58: 361.CrossRefGoogle Scholar
  28. Ravenhall, D.G., Wyld, H.W., Schult, R.L., 1989, Phys.Rev.Lett., 62: 1780.Google Scholar
  29. Roukes, M.L., Scherer, A., Allen, S.J., Craighead, H.G., Ruthen, R.M., Beebe, E.D., Harbison, J.P., 1987, Phys.Rev.Lett., 59: 3011.ADSCrossRefGoogle Scholar
  30. Roukes, M.L., Thornton, T.J., Scherer, A., Simmons, J.A., Van der Gaag, B.P., Beebe, E.D., 1989, in: “Science and Engineering of 1- and 0-Dimensional Semiconductors”, S.P. Beaumont and C.M. Sotomayor-Torres, eds., Plenum, London, to be published.Google Scholar
  31. Simmons, J.A., Tsui, D.C., Weimann, G., 1988, Surf.Sci., 196: 81.ADSCrossRefGoogle Scholar
  32. Srivastava, V., 1989, J.Phys.Condensed Matter, 1: 1919; 1: 2025;ADSCrossRefGoogle Scholar
  33. Srivastava, V., Srinivasan, V., 1989, J.Phys.Condensed Matter, 1: 3281.ADSCrossRefGoogle Scholar
  34. Takagaki, Y., Gamo, K., Namba, S., Ishida, S., Takaoka, S., Murase, K., Ishibashi, K., Aoyagi, Y., 1988, Solid State Comm., 68: 1051.Google Scholar
  35. Takagaki, Y., Gamo, K., Namba, S., Takaoka, S., Murase, K., Ishida, S., Ishibashi, K., Aoyagi, Y., 1989a, Solid State Comm., 69: 811.ADSCrossRefGoogle Scholar
  36. Takagaki, Y., Gamo, K., Namba, S., Takaoka, S., Murase, K., Ishida, S., 1989b, Solid State Comm., 71: 809.ADSCrossRefGoogle Scholar
  37. Thornton, T.J., Roukes, M.L., Scherer, A., Van Der Gaag, B., 1989, preprint.Google Scholar
  38. Timp, G., Chang, A.M., Mankiewich, P., Behringer, R., Cunningham, J.E., Chang, T.Y., Howard, R.E., 1987, Phys.Rev.Lett., 59: 732.ADSCrossRefGoogle Scholar
  39. Timp, G., Baranger, H.U., deVegvar, P., Cunningham, J.E., Howard, R.E., Behringer, R., Mankiewich, P.M., 1988, Phys.Rev.Lett., 60: 2081.ADSCrossRefGoogle Scholar
  40. Timp, G., Behringer, R., Sampere, S., Cunningham, J.E., Howard, R.E., 1989, in: “Nanostructure Physics and Fabrication”, M.A. Reed and W.P. Kirk, eds., Academic Press, New York, to be published. Tsoi, V.S., 1974, JETP Lett., 19: 70.Google Scholar
  41. Van Houten, H., Van Wees, B.J., Mooij, J.E., Beenakker, C.W.J., Williamson, J.G., Foxon, C.T., 1988a, Europhy s.Lett., 5: 721;ADSCrossRefGoogle Scholar
  42. Beenakker, C.W.J., Van Houten, H., Van Wees, B.J., 1988, Europhys.Lett., 7: 359.ADSCrossRefGoogle Scholar
  43. Van Houten, H., Beenakker, C.W.J., Van Loosdrecht, P.H.M., Thornton, T.J., Ahmed, H., Pepper, ML, Foxon, C.T., Harris, J.J., 1988b, Phys.Rev.B, 37: 8534.ADSCrossRefGoogle Scholar
  44. Van Houten, H., Beenakker, C.W.J., Williamson, J.G., Broekaart, M.E.I., Van Loosdrecht, P.H.M., Van Wees, B.J., Mooij, J.E., Foxon, C.T., Harris, J.J., 1989, Phys.Rev.B, 39:8556; for a review of electron focusing in a 2DEG, see: Beenakker, C.W.J., Van Houten, H., Van Wees, B.J., 1989, Festkörperprobleme, 29: 299.ADSGoogle Scholar
  45. Van Wees, B,J., Van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., Van der Marel, D., Foxon, C.T., 1988, Phys.Rev.Lett., 60: 848.ADSCrossRefGoogle Scholar
  46. Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D., Jones, G.A.C., 1988, J.Phys.C, 21: L209.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • C. W. J. Beenakker
    • 1
  • H. van Houten
    • 1
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands

Personalised recommendations