Advertisement

Traversal, Reflection and Dwell Time for Quantum Tunneling

  • M. Büttiker
Part of the NATO ASI Series book series (NSSB, volume 231)

Abstract

Many interesting questions in physics concern the calculation of time scales, i. e. elastic and inelastic scattering rates, and the comparison of such scales to find the most important process for the problem under consideration. Here we are specifically interested in characterizing the time scales for quantum tunneling. Most of the elementary textbooks on quantum mechanics discuss the time it takes a population of carriers to escape from a long lived state, such as a metastable state in a local potential valley or a resonant state in a double or multiple barrier structure. The textbooks, however, are silent when it comes to time scales which are not associated with a long lived state, such as tunneling through a single barrier or through a double barrier away from the resonant condition. A popular but unjustified method to investigate the time scales under the latter conditions, is the use of wave packets and the calculation and extrapolation of the peak motion. Büttiker and Landauer (1982) have criticized this technique, since the shape of a wave packet can differ appreciably from that of an incident packet. Moreover, this approach invariably invokes also an extrapolation procedure. The time of incidence of a packet is calculated by extrapolating the motion of the wave packet far from the barrier to the incident point. Such an extrapolation procedure is unwarranted as the motion of an incident wave packet near a barrier is strongly distorted by the interference with precursors of the packet which have already been reflected. Leavens and Aers (1989a) give a simple but striking example of this effect. Therefore, alternative methods which do not depend on wave packet motion, have been developed (Büttiker and Landauer, 1982; Büttiker, 1983). Below, a very brief review of these methods and their generalizations by Leavens and Aers (1987, 1988a) are presented. Some basic relations between different characteristic time scales are derived analyzing a simple model which describes absorption of particles in a tunneling barrier.

Keywords

Dwell Time Wave Packet Quantum Channel Transmission Probability Side Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baz’, A. I., 1967, Sov. Phys. Nucl. Phys. 4, 182.Google Scholar
  2. Baz’ A. I., Zel’dovich, Ya. B., Perelomov, A. M., 1969, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics, Wiener Bindery Ltd., Jerusalem.Google Scholar
  3. Büttiker, M., 1983, Phys. Rev. B27, 6178.CrossRefGoogle Scholar
  4. Büttiker, M., 1988, IBM J. Res. Develop. 32, 63 (1988).Google Scholar
  5. Büttiker, M., 1989 Electronic Properties of Multilayers and Low Dimensional Semiconductor Structures, edited by J. M. Chamberlain, L. Eaves, J. C. Portal ( Plenum, New York).Google Scholar
  6. Büttiker, M., Landauer, R., 1982, Phys. Rev. Lett. 49, 1739.ADSCrossRefGoogle Scholar
  7. Büttiker, M., Landauer, R., 1985, Phys. Scr. 32, 429.ADSCrossRefGoogle Scholar
  8. Büttiker, M., Landauer, R., 1986a, Festkorperprobleme (Advances in Solid State Physics), Vol. 25, ed. P. Grosse, ( Vieweg,Braunschweig ), 711.Google Scholar
  9. Büttiker, M., Landauer, R., 1986b, IBM J. Res. Develop. 30, 451.CrossRefGoogle Scholar
  10. Büttiker, M., Landauer, R., 1988, J. Phys. C21, 6207. Collins, S., Lowe, D., Barker, J. R., 1987, J. Phys. C20, 6213.Google Scholar
  11. Cutler, P. H., Feuchtwang, T. E., Tsong, T. T., Nguyen, H., Lucas, A. A., 1987, Phys. Rev. B35, 7774.ADSCrossRefGoogle Scholar
  12. Cutler, P. H., Feuchtwang, T. E., Huang, Z., Tsong, T. T., Nguyen, H., Lucas, A. A., Sullivan, T. E., 1987, J. de Phys. Colloque C6 48, 101.Google Scholar
  13. Eaves, L., Stevens, K. W. H., Sheard, F. W., 1986, The Physics and Fabrication of Microstructures and Microdevices, ed. Kelly, M. J., Weisbuch, C., ( Springer, Berlin ). 343.CrossRefGoogle Scholar
  14. Esteve, D., Martinis, J. M., Urbina, C., Turlot, E., Devoret, M. H., Grabert, H., Linkwitz, S., 1989, Physica Scripta, (unpublished).Google Scholar
  15. Falk, J. P., Hauge, E. H., 1988, Phys. Rev. B38, 3287.ADSCrossRefGoogle Scholar
  16. Garcia-Calderon, G., Rubio, A., 1989, Solid State Commun. 71, 237.ADSCrossRefGoogle Scholar
  17. Gueret, P., Baratoff, A., Marclay, E., 1987, Europhyis. Lett. 3, 367.ADSCrossRefGoogle Scholar
  18. Gueret, P., Marclay, E., Meier, H., 1988 Solid State Communic. 68, 977; Appl. Phys. Lett. 53, 1617.Google Scholar
  19. Hauge, E. H., Falck, J. P., Fieldly, T. A., 1987, Phys. Rev. B36, 4203.ADSGoogle Scholar
  20. Hauge, E. H., Stovneng, J. A., 1989, Rev. Mod. Phys. (unpublished).Google Scholar
  21. Huang, Z., Cutler, P. H., Feuchtwang, T. E., Good, Jr. R. H., Kazes, E., Ngyuen H. Q., Park, S. K., 1988, J. de Physique, Colloque C6, 17.Google Scholar
  22. Jauho, A. P., Jonson, M., 1989, (unpublished).Google Scholar
  23. Johnson, M., Silsbee, R. H., 1988, Phys. Rev. B37, 5326.ADSCrossRefGoogle Scholar
  24. Jonson, M., 1980, Solid State Commun. 33, 743.ADSCrossRefGoogle Scholar
  25. Kotler, Z., Nitzan, A., J. 1988, Chem. Phys. 88, 3871.ADSGoogle Scholar
  26. Landauer, R., 1989, Nature (unpublished).Google Scholar
  27. Landauer, R. Buttiker, M., 1987, Phys. Rev. B36, 6255.ADSCrossRefGoogle Scholar
  28. Leavens, C. R., 1988, Solid State Commun. 67, 1135.ADSCrossRefGoogle Scholar
  29. Leavens, C. R., 1989, private communication.Google Scholar
  30. Leavens, C. R., Aers, G. C., 1987, Solid State Commun. 63, 1101.ADSCrossRefGoogle Scholar
  31. Leavens, C. R., Aers, G. C., 1988a, Solid State Commun. 68, 13.ADSCrossRefGoogle Scholar
  32. Leavens, C. R., Aers, G. C., 1988b, J. Vac. Sci. Technol. A6, 305.ADSCrossRefGoogle Scholar
  33. Leavens, C. R., Aers, G. C., (1989a), in Basic Concepts and Applications of Scanning Tunneling Microscopy and Related Techniques, R. J. Behm, Kluwer Academic Publishers, Dordrecht.Google Scholar
  34. Leavens, C. R., Aers, G. C., 1989b, Phys. Rev. B39, 1202.ADSCrossRefGoogle Scholar
  35. Leavens, C. R., Ares, G. C., 1989c, Phys. Rev. B40, 5387.ADSCrossRefGoogle Scholar
  36. Martinis, M., Devoret, M. H., Esteve, D., Urbina, C., 1988, Physica B152 159.Google Scholar
  37. Mugnai, D., and Ranfagni, A., 1988, Europhys. Lett. 6, 1.ADSCrossRefGoogle Scholar
  38. Mullen, K., Ben-Jacob, E. B., Gefen, Y., Schuss, Z., 1989, Phys. Rev. Lett. 21, 2543.ADSCrossRefGoogle Scholar
  39. Persson, B. N. J. Baratoff, A., 1988, Phys. Rev. B38, 9616.MathSciNetADSCrossRefGoogle Scholar
  40. Pippard, A. B., 1982, private communication.Google Scholar
  41. Pollak, E., Miller, W. H., 1984, Phys. Rev. Lett. 53, 115.ADSCrossRefGoogle Scholar
  42. Rybachenko, V. F., 1966, Sov. J. Nucl. Phys. 5, 635.Google Scholar
  43. Schulman, L. S., Ziolkowski, R. W., 1989, in 3rd International Conference on Path Integrals from meV to MeV, Bangkok, edited by V. Sa-yakarit, World Scientific, Singapore, (unpublished).Google Scholar
  44. Smith, F. T., 1960, Phys. Rev. 118, 349.MathSciNetADSCrossRefGoogle Scholar
  45. Sokolovski, D. and Baskin, L. M., 1987, Phys. Rev. A36, 4604.ADSCrossRefGoogle Scholar
  46. Stóvneng, J. A., Hauge, E. H., 1989b, J. Stat. Phys. (unpublished).Google Scholar
  47. Tagliacozzo, A., 1988, II Nuovo Cimento, D10, 363.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Büttiker
    • 1
  1. 1.IBM Research DivisionThomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations