Advertisement

Introduction to Resonant Tunnelling in Semiconductor Heterostructures

  • L. Eaves
Part of the NATO ASI Series book series (NSSB, volume 231)

Abstract

The effective mass approximation for conduction electrons tunnelling through a semiconductor heterostructure barrier is described. The current-voltage characteristics of a variety of double barrier resonant tunnelling devices with wide quantum wells (60–120 nm) and based on the (AlGa)As/GaAs system are presented. In these structures a large number of electron standing wave resonances are observed in I(V). The effect of a transverse magnetic field (B parallel to the plane of the barriers) on the resonances in I(V) is examined. Resonant tunnelling into hybrid magneto-electric states of the quantum well is observed and is interpreted using the effective mass approximation.

Keywords

Resonant Tunnelling Accumulation Layer Effective Mass Approximation Oscillatory Structure Double Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. E. Mendez; “Physics and Applications of Quantum Wells and Superlattices”, NATO AST Series B 170: 159 (1987).ADSCrossRefGoogle Scholar
  2. 3.
    E. S. Alves, L. Eaves, M. Henini, O. H. Hughes, M. L. Leadbeater, F. W. Sheard, G. A. Toombs, G. Hill, M. A. Pate, Electronics Letts 24 (18): 1191 (1988).ADSGoogle Scholar
  3. 5.
    A. Zaslavsky, V. J. Goldman, D. C. Tsui, Appl. Phys. Lett. 53: 1408 (1988).ADSCrossRefGoogle Scholar
  4. 6.
    E. S. Alves, M. L. Leadbeater, L. Eaves, M. Henini, O. H. Hughes, A. Celeste, J. C. Portal, G. Hill, M. A. Pate, Superlattices and Microstructures 5 (4): 527 (1989).ADSCrossRefGoogle Scholar
  5. 7.
    L. Eaves, E. S. Alves, T. J. Foster, M. Henini, O. H. Hughes, M. L. Leadbeater, F. W. Sheard, G. A. Toombs, K. S. Chan, A. Celeste, J. C. Portal, G. Hill, M. A. Pate, Springer Series in Solid State Sciences 83: “Physics and Technology of Submicron Structures”, ed. G. Bauer and F. Kuchar ( Springer-Verlag, Berlin, 1988 ) p. 74.Google Scholar
  6. 10.
    M. Helm, F. M. Peeters, P. England, J. R. Hayes, E. Colas, Phys. Rev. B 39: 3427 (1989).ADSCrossRefGoogle Scholar
  7. 12.
    S. Sen, F. Capasso, A. C. Gossard, R. A. Spah, A. L. Hutchinson and S. N. G. Chu, Appl. Phys. Lett. 51: 18 (1987).CrossRefGoogle Scholar
  8. 13.
    L. I. Schiff, Quantum Mechanics. 1st edition (1949), ( New York, McGraw-Hill, chapter 5 ).Google Scholar
  9. 14.
    M. L. Leadbeater, L. Eaves, P. E. Simmonds, G. A. Toombs, F. W. Sheard, P. A. Claxton, G. Hill and M. A. Pate, Solid State Electron. 31: 707 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • L. Eaves
    • 1
  1. 1.Department of PhysicsUniversity of NottinghamNottinghamUK

Personalised recommendations