Recent Advances in Microfabrication

  • M. Van Rossum
  • M. Van Hove
  • W. De Raedt
  • M. De Potterm
  • P. Jansen
Part of the NATO ASI Series book series (NSSB, volume 231)


This paper discusses various new developments in III–V materials processing and their application to microdevice fabrication. In the field of patterning, the main tools are lift-off and dry etching. Both are scalable down to nanometer dimensions and have been used to produce quantum-size devices. Current control requires both Schottky and ohmic contacts on the device. Progress in processing technology now allows better control of the contact parameters, and the increased flexibility hereby obtained can be considered as a first step towards real “contact engineering”. Finally, flexibility in the use of substrates has also been increased by the development of novel techniques for composite substrates fabrication and for device transplantation from one substrate to another.


Ohmic Contact Schottky Barrier Gallium Arsenide Schottky Barrier Height Schottky Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e. g. Williams, R.E. (1985) Gallium Arsenide Processing Techniques, Artech House, Dedham.Google Scholar
  2. 2.
    Hatzakis, M., Canavello, B J., Shaw, J.M. (1980) IBM J. Res. Develop. 24, 452.Google Scholar
  3. 3.
    Weitzel C.E., Doane, D.A. (1986) ‘A review of GaAs MESFET gate electrode fabrication technology’, J. Electrochem. Soc. 133, 409C–415C.CrossRefGoogle Scholar
  4. 4.
    See e. g. Thomas, H., Morgan, D. V., Thomas, B., Aubrey, J.E., Morgan, G.B. (1986) Gallium Arsenide for Devices and Integrated Circuits, Proceedings of the 1986 UWIST GaAs School, Peter Peregrinus Ltd., London, U.K.Google Scholar
  5. 5.
    De Raedt, W, Jonckheere, R., Van Hove, M, Borghs, G., Van Rossum, M., Van den hove, L., Born, R. (1989) ‘Sub-100 nm gate MESFET’s by electron beam mix & match’, Microelectronic Engineering, 9341–9344.Google Scholar
  6. 6.
    Chao, P.C., Smith, P.M., Palmateer, S.C., Hwang, J.C.M. (1985) ‘Electron-beam fabrication of GaAs Low-noise MESFET’s using a new trilayer resist technique’, IEEE Trans. Electron Devices ED-32, 1042–1046.Google Scholar
  7. 7.
    Melngallis, J. (1987) ‘Focused Ion Beam Technology and Applications’, J. Vac. Sci. Technol. B5, 469–495.Google Scholar
  8. 8.
    Hosono, K., Fujino, T., Matsuda, S., Nagahama, K., Sasaki, Y., Morimoto, H, Watakabe, Y. (1988) ‘Hybrid Lithography of a focused ion beam and an electron beam for the fabrication of a GaAs field effect transistor with a mushroom gate’, J. Vac. Sci. Technol. B6, 1828–1831.Google Scholar
  9. 9.
    See e. g. Bauerle, D. (1986) Chemical processing with lasers, Springer Series in Materials Science ( 1 ), Springer-Verlag, Berlin.Google Scholar
  10. 10.
    Kubena, R.L., Stratton, F.P., Mayer, T.M. (1986) ‘Selective area nucleation for metal chemical vapor deposition using focused ion beams’, J. Vac. Sci. Technol. B6, 1865–1868.Google Scholar
  11. 11.
    Ichihashi T., Matsui, S. (1988) ‘In situ observation on electron beam induced chemical vapor deposition by transmission electron microscopy’, J. Vac. Sci. Technol. B6, 1869–1872.Google Scholar
  12. 12.
    McCord, M.A., Kern, D.P., Chang, T.H.P. (1988) ‘Direct deposition of 10 nm-metallic features with the scanning tunneling microscope’, J. Vac. Sci. Technol. B6, 1877–1880.Google Scholar
  13. 13.
    Flamm, D.L., Manos, D.M. (1988) Plasma Etching: An introduction, Academic Press, Orlando.Google Scholar
  14. 14.
    Ibbotson, D.E., Flamm, D.L. (1988) ‘Plasma Etching for III-V Compound Devices: Part I’, Solid State Technol., October, 77–79.Google Scholar
  15. 15.
    Ibbotson, D.E., Flamm, D.L. (1988) ‘Plasma Etching for III–V Compound Devices: Part II’, Solid State Technol., November, 105–137.Google Scholar
  16. 16.
    Seaward, K.L., Moll, N.J., Coulman, D.J., Stickle, W.F. (1987) ‘An analytical study of etch and etch-stop reactions for GaAs and AlGaAs in CCl2F2 plasma’ J. Appl. Phy s. 61, 2358–2364.Google Scholar
  17. 17.
    Cooper in, C.B., Salimian, S., MacMillan, H.F. (1.987) ‘Use of thin AlGaAs and InGaAs stop-etch layers for reactive ion etch processing of III-V compound semiconductors’, Appl. Phys. Lett. 51, 2225–2226.Google Scholar
  18. 18.
    Pang, S.W., Geis, M.W., Efremow, N.N., Lincoln, G.A. (1985) ‘Effects of ion species and absorbed gas on dry etching induced damage in GaAs’ J. Vac. Sci. Technol. B3, 398–401.Google Scholar
  19. 19.
    Cheung, R., Thorns, S., Beaumont, S.P., Doughty, G., Law, V., Wilkinson, C.D.W. (1987) ‘Reactive ion etching of GaAs using a mixture of methane and hydrogen’, Electronics Lett. 23, 857–858.CrossRefGoogle Scholar
  20. 20.
    Cheung, R., Thorns, S., Mclntyre, I., Wilkinson, C.D.W., Beaumont, S.P. (1988)’ Passivation of donors in electron beam lithographically defined nanostructures after methane/hydrogen reactive ion etching’, J. Vac. Sci. Technol. B6, 1911–1915.Google Scholar
  21. 21.
    Cooper III, C.B., Salimian, S., Day, M.E. (1989) ‘Dry Etching for the Fabrication of Integrated Circuits in III–V Compound Semiconductors’, Solid State Technol., January, 109–112.Google Scholar
  22. 22.
    Salzman, J., Venkatesan, T., Margulit, S., Yariv, A. (1985) ‘Double heterostructure lasers with facets formed by a hybrid wet and reactive-ion-etching technique’, J. Appl. Phys. 57, 2948–2950.Google Scholar
  23. 23.
    Lecrosnier, D., Henry, L., Le Corre, A., Vaudry, C. (1987) ‘GalnAs FET fully dry etched by metal organic reactive ion etching techniques’, Electronics Lett. 23, 1254–1255.CrossRefGoogle Scholar
  24. 24.
    Ade, R.W., Fossum, E.R., Tischler, M.A. (1988) ‘Fabrication of epitaxial GaAs/AlGaAs diaphragms by selective dry etching’, J. Vac. Sci. Technol. B6, 1592–1594.Google Scholar
  25. 25.
    Lee, K.Y., Smith III, T.P., Ford, J.B., Hansen, W., Knoedler, C.M., Hong, J.M., Kern, D.P. (1989) ‘Submicron trenching of semiconductor nanostructures’, Appl. Phys. Lett. 55, 625–627.Google Scholar
  26. 26.
    Randall, J.N.., Reed, M.A., Moore, T.M., Matyi, R.J., Lee, J.W. (1988) ‘Microstructure fabrication and transport through quantum dots’, J. Vac. Sci. Technol. B6, 302–305.Google Scholar
  27. 27.
    Scherer, A., Craighead, H.G. (1986) ‘Fabrication of small laterally patterned multiple quantum wells’, Appl. Phys. Lett. 49, 1284–1286.Google Scholar
  28. 28.
    Kuan, T.S., Batson, P.E., Jackson, T.N., Rupprecht, H., Wilkie, E.L. (1983) ‘Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs’, J. Appl. Phys. 54, 6952–6957.Google Scholar
  29. 29.
    Murakami, M., Childs, K.D., Baker, J.M., Callegari, A. (1986) ‘Microstructure studies of AuNiGe ohmic contacts to n-type GaAs’, J. Vac. Sci. Technol. B4, 903–911.Google Scholar
  30. 30.
    Braslau, N. (1983) ‘Ohmic contacts to GaAs’, Thin Solid Films 104, 391–397.ADSCrossRefGoogle Scholar
  31. 31.
    Patrick, W., Mackie, W.S., Beaumont, S.P., Wilkinson, C.D.W. (1986) ‘Low-temperature annealed contacts to very thin GaAs epilayers’, Appl. Phys. Lett. 48, 986–988.Google Scholar
  32. 32.
    Wuyts, K., Silverans, R.E., Van Hove, M., Van Rossum, M. (1989) ‘Characterization of pulsed laser beam mixed AuTe/GaAs ohmic contacts’, to be published in Proceedings of the MRS 1989, Fall Meeting (Boston).Google Scholar
  33. 33.
    Marshall, E.D., Chen, W.X., Wu, C.S., Lau, S.S. and Kuech, T.F. (1985) ‘Non-alloyed ohmic contacts to n-GaAs by solid phase epitaxy’, Appl. Phys. Lett. 47, 298–300.Google Scholar
  34. 34.
    Yu, L.S., Wang, L.C., Marshall, E.D., Lau, S.S., Kuech, T.F. (1989) ‘The temperature dependence on contact resistivity of the Ge/Pd and the Si/Pd nonalloyed contact scheme on n-GaAs’ J. Appl. Phys. 65, 1621–1625.Google Scholar
  35. 35.
    Sands, T., Marshall, E.D., Wang, L.C. ‘Solid-phase regrowth of compound semiconductors by reaction-driven decomposition of intermediate phases’, J. Mater. Res. 3, 914–921.Google Scholar
  36. 36.
    Paccagnella, A., Canali, C., Donzelli, G., Zanoni, E., Wang, L.C., Lau, S.S. (1988) ‘GaAs MESFET contacts: Technology and performances’, Electronics Lett. 24, 708–709.Google Scholar
  37. 37.
    Wang, L.C., Lau, S.S., Hsieh, E.K., Velebir, J.R. (1989) ‘Low-resistance nonspiking ohmic contact for AlGaAs/GaAs high electron mobility transistors using the Ge/ Pd scheme’, Appl. Phys. Lett. 54, 2677–2679.Google Scholar
  38. 38.
    Van Eck, T.E., Chu, P., Chang, W.S.C., Wieder, H.H., (1986) ‘Electroabsorption in an InGaAs/GaAs strained-layer multiple quantum well’, Appl. Phys. Lett. 49, 135–136.Google Scholar
  39. 39.
    Van Hoof, C., Van Hove, M., Jansen, P., Van Rossum, M. and Borghs, G. ‘Non-alloyed Ge/Pd contacts for AlAs/GaAs resonant tunneling structures’, to be published.Google Scholar
  40. 40.
    Woodall, J.M., Freeouf, J.L., Pettit, G.D., Jackson, T., Kirchner, P. (1981) ‘Ohmic contacts to n-GaAs using graded bandgap layers of Ga In As grown by molecular beam epitaxy’ J. Vac. Sci. Technol. 19, 626–627.Google Scholar
  41. 41.
    Wright, S.L., Marks, R.F., Tiwari, S., Jackson, T.N., Baratte, H. (1986) ‘In situ contacts to GaAs based on InAs’, Appl. Phys. Lett. 49, 1545–1547.Google Scholar
  42. 42.
    Kirchner, P.D., Jackson, T.N., Pettit, G.D., Woodall, J.M. (1985) ‘Low-resistance nonalloyed ohmic contacts to Si-doped molecular beam epitaxial GaAs’, Appl. Phys. Lett. 47, 26–28.Google Scholar
  43. 43.
    Schubert, E.F., Cunningham, J.E., Tsang, W.T., Chiu, T.H. (1986) ‘Delta-doped ohmic contacts to n-GaAs ’, Appl. Phys. Lett. 49, 292–294.Google Scholar
  44. 44.
    See e. g. Sze, S.M. (1981) Physics of Semiconductor Devices, Wiley, New York.Google Scholar
  45. 45.
    Rhoderick, E.H., Williams, R.H. (1988) Metal-semiconductor contacts, 2nd edition, Oxford University Press, Oxford.Google Scholar
  46. 46.
    Shannon, J.M. (1974) ‘Increasing the effective height of a Schottky barrier using low-energy ion implantation’ Appl. Phys. Lett. 25, 75–77.Google Scholar
  47. 47.
    Schwartz, G.P., Gualtieri, G.J. (1986) ‘Schottky banier enhancement on M-P+-N structures including free carriers ’, J. Electrochem. Soc. 133, 1266–1268.Google Scholar
  48. 48.
    Stanchina, W.E., Clark, M.D., Vaidyanathan, K.V., Jullens, R.A. and Crowell, R.A. (1987) Effects and characterization of ion implantation enhanced GaAs Schottky barriers, J. Electrochem. Soc. 134, 967-971.Google Scholar
  49. 49.
    Eglash, S J., Newman, N., Pan, S., Mo, D., Shenai, K., Spicer, W.E., Ponce, F.A., Collins, D.M. (1987) ‘Engineered Schottky barriers diodes for the modification and control of Schottky barrier heights’, J. Appl. Phys. 61, 5159–5169.Google Scholar
  50. 50.
    Waldrop, J.R., Grant, R.W. (1988) ‘Metal Contacts to GaAs with 1 eV Schottky barrier height ’, Appl. Phys. Lett. 52, 1794–1796.Google Scholar
  51. 51.
    de Potter, M., De Raedt, W., Van Hove, M., Zou, G., Bender, H., Meuris, M., Van Rossum, M. ‘Characterization of the TiW-GaAs interface after rapid thermal annealing’, to be published in J. Appl. Phys.Google Scholar
  52. 52.
    Wu, X., Schmidt, M.T., Yang, E.S. (1989) ‘Control of the Schottky barrier using an ultra thin interface metal layer’, Appl. Phys. Lett. 54, 268–269.Google Scholar
  53. 53.
    Turner, G.W., Choi,H.K., Mattia, J.P., Chen, C.L.,Eglash, S.J. andTsaur, B.-Y. (1988) ‘Monolithic GaAs/Si integration’, Mat. Res. Soc. Symp. Proc. Vol. 116, 179–192.Google Scholar
  54. 54.
    Liang, J.B., De Boeck, J., Deneffe, K., Arent, D.J., Van Hoof, C., Vanhellemont, J.,Borghs, G. (1989) ‘Embedded growth of gallium arsenide in silicon recesses for a coplanar GaAs on Si technology ’, J. Vac. Sci. Technol. B7, 116–119.Google Scholar
  55. 55.
    Sichijo, H., Matyi, R.J., Taddiken, A.H. (1988) ‘Co-integration of GaAs MESFET and Si CMOS circuits’, IEEE Electron Device Lett., EDL-9(9), 444–446.Google Scholar
  56. 56.
    Yablonovitch, E., Gmitter, T., Harbison, J.P., Bhat, R. (1987) ‘Extreme selectivity in the lift-off of epitaxial GaAs films’, Appl. Phys. Lett. 51, 2222–2224.Google Scholar
  57. 57.
    Van Hoof, C., De Raedt, W., Van Rossum, M., Borghs, G. (1989) ‘MESFET lift-off from GaAs substrate to glass host’, Electronics Lett. 25, 136–137.CrossRefGoogle Scholar
  58. 58.
    Pollentier, I., De Dobbelaere, P., De Pestel, F., Van Daele, P., Demeester, P. (1989) ‘Integration of GaAs LED’s on Si by epi-lift-off’, in H. Heuberger, H. Ryssel and P. Lange (eds.), ESSDERC ‘89, 19th European solid state device research conference, Springer Verlag, Berlin, pp. 401–404.Google Scholar
  59. 59.
    Yablonovitch, E., Kapon, E., Gmitter, T.J., Yun, C.P., Bhat, R. (1989) ‘Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates’, IEEE photonics techn. lett. 1, 41–42.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Van Rossum
    • 1
  • M. Van Hove
    • 1
  • W. De Raedt
    • 1
  • M. De Potterm
    • 1
  • P. Jansen
    • 1
  1. 1.IMEC vzwLeuvenBelgium

Personalised recommendations