Quantum Transport and Dynamics for Bloch Electrons in Electric Fields

  • Gerald J. Iafrate
  • Joseph B. Krieger
  • Yan Li
Part of the NATO ASI Series book series (NSSB, volume 231)


A novel formalism for treating Bloch electron dynamics and quantum transport in inhomogeneous electric fields of arbitrary strength and time dependence is reviewed. In this formalism, the electric field is described through the use of the vector potential. This choice of gauge leads to a natural set of basis functions for describing Bloch electron dynamics; in addition, a basis set of localized, electric field-dependent Wannier functions is established and utilized to derive a quantum “Boltzmann equation” which includes explicit band-mixing transients such as effective mass dressing and Zener tunneling. The application of this formalism to quantum transport and Bloch oscillations in homogeneous electric fields is emphasized; also, issues relevant to applications concerning spatially localized inhomogeneous electric fields such as occur in problems involving tunneling through “band-enginereed” tunneling barriers and impurity scattering is discussed.


Gallium Arsenide Quantum Transport Density Matrix Element Wannier Function Tight Binding Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Iafrate, “The Physics of Submicron/Ultrasubmicron Dimensions,” Gallium Arsenide Technology, edited by D.K. Ferry ( H.W. Sams, Inc., Indianapolis, Indiana ), 1985, Chapter 12.Google Scholar
  2. 2.
    G. J. Iafrate, J.B. Krieger, Bulletin of the American Physical Society, S13-3, P814, March 1988; Phys. Rev. B, 40, 6144 1989.Google Scholar
  3. 3.
    J. B. Krieger, G.J. Iafrate, Phys. Rev. B, 33, 5494 (1986).Google Scholar
  4. 4.
    J. B. Krieger, G.J. Iafrate, Phys. Rev. B, 35, 9644 (1987).Google Scholar
  5. 5.
    G. J. Iafrate, J.B. Krieger, Solid-State Electronics, 31, 517 (1988).Google Scholar
  6. 6.
    G. F. Köster, J.C. Slater, Phys. Rev. 95, 1167 (1954).Google Scholar
  7. 7.
    J. G. Gay, J.R. Smith, Phys. Rev. B11, 4906 (1975).Google Scholar
  8. 8.
    G. H. Wannier, Phys. Rev. 52, 191 (1937).Google Scholar
  9. 9.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge PressGoogle Scholar
  10. Cambridge, England, 1964).Google Scholar
  11. 10.
    G. J. Iafrate, J.B. Krieger, to be published.Google Scholar
  12. 11.
    In the case where the initial state of the density matrix is not separable, as in mixed state analyses, such a separation may not be very useful.Google Scholar
  13. 12.
    P. T. Landsberg, Solid State Theory-Methods and Applications ( Wiley-Interscience, New York, 1969 ).Google Scholar
  14. 13.
    E. o; Kane, J. Phys. Chem. Solids, 12, 181 (1959).Google Scholar
  15. 14.
    J. B. Krieger, Phys. Rev., 156, 776 (1967).Google Scholar
  16. 15.
    J. M. Ziman, Electrons and Phonons, Oxford Press.Google Scholar
  17. 16.
    J. M. Ziman, Principles of the Theory of Solids, 2d ed., p.172,Google Scholar
  18. Cambridge (1972).Google Scholar
  19. 17.
    E. Kretschmann, Z. Physik 2, 518 (1934).ADSCrossRefGoogle Scholar
  20. 18.
    D. Pfirsch and E. Spenke, Z. Physik 137, (1954).Google Scholar
  21. 19.
    W. V. Houston, Phys. Rev. 52, 184 (1940).Google Scholar
  22. 20.
    W. Kohn, J. N. Luttinger, Phys. Rev., 108, 590 (1957).Google Scholar
  23. 21.
    B. Chakraborty and P.B. Allen, Phys. Rev. Lett. 42, 736 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Gerald J. Iafrate
    • 1
  • Joseph B. Krieger
    • 2
  • Yan Li
    • 2
  1. 1.U.S. Army Electronics Technology and Devices LaboratoryFort MonmouthUSA
  2. 2.City University of New York-Brooklyn CollegeBrooklynUSA

Personalised recommendations