Quantum Device Modeling with the Convolution Method

  • T. P. Orlando
  • P. F. Bagwell
  • R. A. Ghanbari
  • K. Ismail
Part of the NATO ASI Series book series (NSSB, volume 231)


Recent advances in materials fabrication and nanolithography have made possible a generation of semiconducting structures whose conductance is governed by quantum mechanical phenomena. In particular, nanostructures on Si MOSFETs and GaAs MODFETs have shown modulations in their conductance versus gate voltage characteristics that have been attributed to quantum mechanical effects. In this paper, we review a modeling scheme which gives a unified way of understanding how these quantum effects are affected by temperature, mobility, voltage, and the structure of the device. This model provides not only a qualitative understanding of the various quantum phenomena, but also a basis for developing efficient computational algorithms for modeling specific devices. We have called this scheme the convolution method because most of the calculations can be written in terms of separate convolutions involving the individual phenomena of temperature, mobility, voltage, and structure.


Ballistic Transport Convolution Method Semiclassical Method Resonant Tunneling Device Back Gate Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrikosov, A. A., Gorkov, L. P., Dzyaloshinski, I. E., 1963, “Methods of Quantum Field Theory in Statistical Physics,” Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  2. Al’tshuler, B. L., 1985, Fluctuations in the Extrinsic Conductivity of Disordered Conductors, Sov. Phys. JETP Lett., 41: 648.Google Scholar
  3. Antoniadis, D. A., Warren, A. C., Smith, H. I., 1985, Quantum Mechanical Effects in Very Short and Very Narrow Channel MOSFETs, IEDM Tech. Dig., 562.Google Scholar
  4. Ashcroft, N. W. Mermin, N. D., 1976, “Solid State Physics,” Holt, Rinehart, and Winston, New York.Google Scholar
  5. Bagwell, P. F., 1988, “Quantum Mechanical Transport Phenomenon in Nano-structured Inversion Layers,” S. M. Thesis, MIT.Google Scholar
  6. Bagwell, P. F., Antoniadis, D. A., Orlando, T. P., 1989, Quantum Mechanical and Non-Stationary Transport Phenomenon in Nanostructured Silicon Inversion Layers, in: “Advanced MOS Device Physics,” N. Einspruch and G. Gildenblat, ed., Academic Press, San Diego.Google Scholar
  7. Bagwell, Phillip F., Orlando, Terry P., 1989a, Landauer’s Conductance Formula and its Generalization to Finite Voltages, Phys. Rev. B, 40: 1456.Google Scholar
  8. Bagwell, P. F., Orlando, T. P., 1989b, Broadened Conductivity Tensor and Density of States for a Superlattice Potential in One, Two, and Three Dimensions, Phys. Rev. B, 40: 3735.Google Scholar
  9. Bernstein, G., Ferry, D. K., 1987, Negative Differential Conductivity in Lateral Surface Superlattices, J. Vac. Sci. Technol. B, 5: 964.Google Scholar
  10. Büttiker, M., Imry, Y., Landauer, R., Pinhas, S., 1985, Generalized Many-Channel Conductance Formula with Application to Small Rings, Phys. Rev. B, 31: 6207.Google Scholar
  11. Büttiker, M., 1986, Role of Quantum Coherence in Resistors, Phys. Rev. B, 33:3020. See also Büttiker, M., 1988, Coherent and Sequential Tuneling in Series Barriers, IBM J. Res. Dev., 32: 63.Google Scholar
  12. Fischer, Daniel S., Lee, Patrick A., 1981, Relation Between Conductivity and Transmission Matrix, Phys. Rev. B, 23: 6851.Google Scholar
  13. Glazman, L. I., Khaetskii, A. V., 1988, Nonlinear Quantum Conductance of a Point Contact, JETP Lett., 48: 591.ADSGoogle Scholar
  14. Glazman, L. I., Khaetskii, A. V., 1989, Nonlinear Quantum Conductance of a Lateral Microconstraint in a Heterostructure, Europhys. Lett., 9: 263.Google Scholar
  15. Ismail, K., Chu, W., Antoniadis, D. A., Smith, Henry I., 1988, Surface-Superlattice Effects in a Grating-Gate GaAs/GaAlAs Modulation-Doped Field- Effect-Transistor, Appl. Phys. Lett., 52: 1071.Google Scholar
  16. Ismail, K., Chu, W., Yen, A., Antoniadis, D. A., Smith, Henry I., 1989a, Negative Transconductance and Negative Differential Resistance in a Grid-Gate Modulation Doped Field-Effect Transistor, Appl. Phys. Lett., 54: 460.Google Scholar
  17. Ismail, K., Chu, W., Antoniadis, D. A., Smith, Henry I., 1989b, One Dimensional Subbands and Mobility Modulation in GaAs/AlGaAs Quantum Wires, Appl. Phys. Lett., 54: 1130.Google Scholar
  18. Ismail, Khalid, 1989, “The Study of Electron Transport in Field-Induced Quantum Wells on GaAs/AlAs”, Ph. D. Thesis, MIT.Google Scholar
  19. Kittel, C., 1986, “Introduction to Solid State Physics”, Wiley, New York.Google Scholar
  20. Kouwenhoven, L. P., van Wees, B. J., Harmans, C. J. P. M., Williamson, J. G., van Houten, H., Beenakker, C. W. J., Foxon, C. T., Harris, J. J., 1989, Nonlinear Conductance of Quantum Point Contacts, Phys. Rev. 13., 39: 8040.ADSCrossRefGoogle Scholar
  21. Landauer, R., 1957, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction, IBM J. Res. Dev., 1: 223.Google Scholar
  22. Landauer, Rolf, 1970, Electrical Resistance of Disordered One Dimensional Lattices, Phil. Mag., 21: 683.Google Scholar
  23. Landauer, Rolf, 1987, Electrical Transport in Open and Closed Systems, Z. Phys. B., 68: 217.Google Scholar
  24. Landauer, Rolf, 1989, Conductance Determined by Transmission: Probes and Quantized Constriction Resistance, to appear in J. Phys. Cond. Matt..Google Scholar
  25. Lee, P. A., Stone, A. D., 1985, Universal Conductance Fluctuations in Metals, Phys. Rev. Lett., 55: 1622.Google Scholar
  26. Madelung, O., 1978, “Introduction to Solid State Theory,” Springer-Verlag, New York.CrossRefGoogle Scholar
  27. Payne, M. C., 1989, Electrostatic and Electrochemical Potentials in Quantum Trans-port, J. Phys. Cond. Matt., 1: 4931.Google Scholar
  28. Rickayzen, G., 1980, “Green’s Functions and Condensed Matter,” Academic Press, New York.Google Scholar
  29. Scott-Thomas, J. H. F., Kastner, M. A., Antoniadis, D. A., Smith, Henry I., Field, Stuart, 1988, Si MOSFETs with 70nm Slotted Gates for Study of Quasi One Dimensional Quantum Transport, J. Vac. Set. Technol. B, 6: 1841.Google Scholar
  30. Skocpol, W. J., Mankiewich, P. M., Howard, R. E., Jackel, L. D., Tennant, D. M., Stone, A. D., 1986, Universal Conductance Fluctuations in Silicon Inversion Layer Nanostructures, Phys. Rev. Lett., 56: 2865.Google Scholar
  31. Tokura, Y., Tsubaki, K., 1987, Conductivity Oscillation due to Quantum Interference in a Proposed Washboard Transistor, Appl. Phys. Lett., 51: 1807.Google Scholar
  32. van Wees, B. J., van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., van der Marel, D., Foxon, C. T., 1988, Quantized Conductance of Point Contacts in a Two Dimensional Electron Gas, Phys. Rev. Lett., 60: 848.Google Scholar
  33. Warren, A. C., Antoniadis, D. A., Smith, H. I., Melngailis, J., 1985, Surface Superlattice Formation in Silicon Inversion Layers Using 0.2-/zm Period Grating-Gate Electrodes, IEEE Electron Dev. Lett., EDL-6: 294.Google Scholar
  34. Warren, A. C., Antoniadis, D. A., Smith, H. I., 1986, Quasi One-Dimensional Conduction in Multiple, Parallel Inversion Lines, Phys. Rev. Lett., 56: 1858.Google Scholar
  35. Wharam, D. A., Thornton, T. J., Newbury, R., Pepper, M., Ahmed, H., Frost, J. E. F., Hasko, D. G., Peacock, D. C., Ritchie, D. A., Jones, G. A. C., 1988, One Dimensional Transport and the Quantization of the Ballistic Resistance, J. Phys. C: Solid State Phys., 21: L209.Google Scholar
  36. Wolf, E. L., 1985, “Principles of Electron Tunnelling Spectroscopy”, Oxford University Press, New York. See equations (2.5) and (2. 6 ).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • T. P. Orlando
    • 1
  • P. F. Bagwell
    • 1
  • R. A. Ghanbari
    • 1
  • K. Ismail
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations